Properties

Label 2-297-11.4-c1-0-3
Degree 22
Conductor 297297
Sign 0.8650.500i0.865 - 0.500i
Analytic cond. 2.371552.37155
Root an. cond. 1.539981.53998
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 − 0.715i)2-s + (−0.160 − 0.494i)4-s + (−0.240 + 0.174i)5-s + (1.32 + 4.08i)7-s + (−0.947 + 2.91i)8-s + 0.361·10-s + (−2.91 + 1.58i)11-s + (3.06 + 2.22i)13-s + (1.61 − 4.97i)14-s + (2.17 − 1.58i)16-s + (1.09 − 0.796i)17-s + (1.01 − 3.12i)19-s + (0.124 + 0.0907i)20-s + (4.00 + 0.516i)22-s + 4.75·23-s + ⋯
L(s)  = 1  + (−0.695 − 0.505i)2-s + (−0.0803 − 0.247i)4-s + (−0.107 + 0.0780i)5-s + (0.501 + 1.54i)7-s + (−0.334 + 1.03i)8-s + 0.114·10-s + (−0.877 + 0.479i)11-s + (0.849 + 0.616i)13-s + (0.431 − 1.32i)14-s + (0.544 − 0.395i)16-s + (0.265 − 0.193i)17-s + (0.233 − 0.717i)19-s + (0.0279 + 0.0202i)20-s + (0.853 + 0.110i)22-s + 0.991·23-s + ⋯

Functional equation

Λ(s)=(297s/2ΓC(s)L(s)=((0.8650.500i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.865 - 0.500i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(297s/2ΓC(s+1/2)L(s)=((0.8650.500i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.865 - 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 297297    =    33113^{3} \cdot 11
Sign: 0.8650.500i0.865 - 0.500i
Analytic conductor: 2.371552.37155
Root analytic conductor: 1.539981.53998
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ297(136,)\chi_{297} (136, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 297, ( :1/2), 0.8650.500i)(2,\ 297,\ (\ :1/2),\ 0.865 - 0.500i)

Particular Values

L(1)L(1) \approx 0.771489+0.206741i0.771489 + 0.206741i
L(12)L(\frac12) \approx 0.771489+0.206741i0.771489 + 0.206741i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1+(2.911.58i)T 1 + (2.91 - 1.58i)T
good2 1+(0.984+0.715i)T+(0.618+1.90i)T2 1 + (0.984 + 0.715i)T + (0.618 + 1.90i)T^{2}
5 1+(0.2400.174i)T+(1.544.75i)T2 1 + (0.240 - 0.174i)T + (1.54 - 4.75i)T^{2}
7 1+(1.324.08i)T+(5.66+4.11i)T2 1 + (-1.32 - 4.08i)T + (-5.66 + 4.11i)T^{2}
13 1+(3.062.22i)T+(4.01+12.3i)T2 1 + (-3.06 - 2.22i)T + (4.01 + 12.3i)T^{2}
17 1+(1.09+0.796i)T+(5.2516.1i)T2 1 + (-1.09 + 0.796i)T + (5.25 - 16.1i)T^{2}
19 1+(1.01+3.12i)T+(15.311.1i)T2 1 + (-1.01 + 3.12i)T + (-15.3 - 11.1i)T^{2}
23 14.75T+23T2 1 - 4.75T + 23T^{2}
29 1+(3.099.52i)T+(23.4+17.0i)T2 1 + (-3.09 - 9.52i)T + (-23.4 + 17.0i)T^{2}
31 1+(4.15+3.01i)T+(9.57+29.4i)T2 1 + (4.15 + 3.01i)T + (9.57 + 29.4i)T^{2}
37 1+(1.404.30i)T+(29.9+21.7i)T2 1 + (-1.40 - 4.30i)T + (-29.9 + 21.7i)T^{2}
41 1+(1.87+5.78i)T+(33.124.0i)T2 1 + (-1.87 + 5.78i)T + (-33.1 - 24.0i)T^{2}
43 1+7.92T+43T2 1 + 7.92T + 43T^{2}
47 1+(1.47+4.55i)T+(38.027.6i)T2 1 + (-1.47 + 4.55i)T + (-38.0 - 27.6i)T^{2}
53 1+(1.160.845i)T+(16.3+50.4i)T2 1 + (-1.16 - 0.845i)T + (16.3 + 50.4i)T^{2}
59 1+(1.956.01i)T+(47.7+34.6i)T2 1 + (-1.95 - 6.01i)T + (-47.7 + 34.6i)T^{2}
61 1+(9.41+6.84i)T+(18.858.0i)T2 1 + (-9.41 + 6.84i)T + (18.8 - 58.0i)T^{2}
67 1+2.68T+67T2 1 + 2.68T + 67T^{2}
71 1+(5.173.75i)T+(21.967.5i)T2 1 + (5.17 - 3.75i)T + (21.9 - 67.5i)T^{2}
73 1+(0.5111.57i)T+(59.0+42.9i)T2 1 + (-0.511 - 1.57i)T + (-59.0 + 42.9i)T^{2}
79 1+(5.52+4.01i)T+(24.4+75.1i)T2 1 + (5.52 + 4.01i)T + (24.4 + 75.1i)T^{2}
83 1+(4.082.97i)T+(25.678.9i)T2 1 + (4.08 - 2.97i)T + (25.6 - 78.9i)T^{2}
89 1+16.3T+89T2 1 + 16.3T + 89T^{2}
97 1+(3.15+2.29i)T+(29.9+92.2i)T2 1 + (3.15 + 2.29i)T + (29.9 + 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.48682940789183208415484294556, −11.04421101684038642250251783772, −9.890853223101985435586295801236, −8.922909228783547162190756238761, −8.527592797265572361778288519719, −7.12332697045744564079837166136, −5.61154290143614638431197659922, −5.00718406927905269395364563544, −2.90606852468253521906509412838, −1.70612263911683837954246862731, 0.801072296714126626768235543596, 3.34631089723658753843937905446, 4.37983592476870187644699415692, 5.93085959464424030049380085543, 7.15297536364385771094054690243, 7.980911085781261067837332210916, 8.408095727116535602869975035515, 9.884631443706908644929403654539, 10.52110286247959738377822281883, 11.46887939393595980341423029245

Graph of the ZZ-function along the critical line