L(s) = 1 | + (−0.984 − 0.715i)2-s + (−0.160 − 0.494i)4-s + (−0.240 + 0.174i)5-s + (1.32 + 4.08i)7-s + (−0.947 + 2.91i)8-s + 0.361·10-s + (−2.91 + 1.58i)11-s + (3.06 + 2.22i)13-s + (1.61 − 4.97i)14-s + (2.17 − 1.58i)16-s + (1.09 − 0.796i)17-s + (1.01 − 3.12i)19-s + (0.124 + 0.0907i)20-s + (4.00 + 0.516i)22-s + 4.75·23-s + ⋯ |
L(s) = 1 | + (−0.695 − 0.505i)2-s + (−0.0803 − 0.247i)4-s + (−0.107 + 0.0780i)5-s + (0.501 + 1.54i)7-s + (−0.334 + 1.03i)8-s + 0.114·10-s + (−0.877 + 0.479i)11-s + (0.849 + 0.616i)13-s + (0.431 − 1.32i)14-s + (0.544 − 0.395i)16-s + (0.265 − 0.193i)17-s + (0.233 − 0.717i)19-s + (0.0279 + 0.0202i)20-s + (0.853 + 0.110i)22-s + 0.991·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.865 - 0.500i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.865 - 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.771489 + 0.206741i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.771489 + 0.206741i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (2.91 - 1.58i)T \) |
good | 2 | \( 1 + (0.984 + 0.715i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (0.240 - 0.174i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.32 - 4.08i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.06 - 2.22i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.09 + 0.796i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.01 + 3.12i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.75T + 23T^{2} \) |
| 29 | \( 1 + (-3.09 - 9.52i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (4.15 + 3.01i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.40 - 4.30i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.87 + 5.78i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 7.92T + 43T^{2} \) |
| 47 | \( 1 + (-1.47 + 4.55i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.16 - 0.845i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.95 - 6.01i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-9.41 + 6.84i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 2.68T + 67T^{2} \) |
| 71 | \( 1 + (5.17 - 3.75i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.511 - 1.57i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (5.52 + 4.01i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (4.08 - 2.97i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 16.3T + 89T^{2} \) |
| 97 | \( 1 + (3.15 + 2.29i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48682940789183208415484294556, −11.04421101684038642250251783772, −9.890853223101985435586295801236, −8.922909228783547162190756238761, −8.527592797265572361778288519719, −7.12332697045744564079837166136, −5.61154290143614638431197659922, −5.00718406927905269395364563544, −2.90606852468253521906509412838, −1.70612263911683837954246862731,
0.801072296714126626768235543596, 3.34631089723658753843937905446, 4.37983592476870187644699415692, 5.93085959464424030049380085543, 7.15297536364385771094054690243, 7.980911085781261067837332210916, 8.408095727116535602869975035515, 9.884631443706908644929403654539, 10.52110286247959738377822281883, 11.46887939393595980341423029245