L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 + 0.342i)4-s + (−1.43 − 1.20i)5-s + (−0.939 − 0.342i)9-s + (0.766 − 0.642i)11-s + (0.173 + 0.984i)12-s + (−1.43 + 1.20i)15-s + (0.766 − 0.642i)16-s + (1.76 + 0.642i)20-s + (0.939 − 0.342i)23-s + (0.439 + 2.49i)25-s + (−0.5 + 0.866i)27-s + (−0.326 + 0.118i)31-s + (−0.5 − 0.866i)33-s + 0.999·36-s + (0.939 − 1.62i)37-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 + 0.342i)4-s + (−1.43 − 1.20i)5-s + (−0.939 − 0.342i)9-s + (0.766 − 0.642i)11-s + (0.173 + 0.984i)12-s + (−1.43 + 1.20i)15-s + (0.766 − 0.642i)16-s + (1.76 + 0.642i)20-s + (0.939 − 0.342i)23-s + (0.439 + 2.49i)25-s + (−0.5 + 0.866i)27-s + (−0.326 + 0.118i)31-s + (−0.5 − 0.866i)33-s + 0.999·36-s + (0.939 − 1.62i)37-s + ⋯ |
Λ(s)=(=(297s/2ΓC(s)L(s)(−0.448+0.893i)Λ(1−s)
Λ(s)=(=(297s/2ΓC(s)L(s)(−0.448+0.893i)Λ(1−s)
Degree: |
2 |
Conductor: |
297
= 33⋅11
|
Sign: |
−0.448+0.893i
|
Analytic conductor: |
0.148222 |
Root analytic conductor: |
0.384996 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 297, ( :0), −0.448+0.893i)
|
Particular Values
L(21) |
≈ |
0.5063821624 |
L(21) |
≈ |
0.5063821624 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.173+0.984i)T |
| 11 | 1+(−0.766+0.642i)T |
good | 2 | 1+(0.939−0.342i)T2 |
| 5 | 1+(1.43+1.20i)T+(0.173+0.984i)T2 |
| 7 | 1+(−0.766−0.642i)T2 |
| 13 | 1+(0.939+0.342i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 29 | 1+(0.939−0.342i)T2 |
| 31 | 1+(0.326−0.118i)T+(0.766−0.642i)T2 |
| 37 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.939+0.342i)T2 |
| 43 | 1+(−0.173+0.984i)T2 |
| 47 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 53 | 1−0.347T+T2 |
| 59 | 1+(−0.266−0.223i)T+(0.173+0.984i)T2 |
| 61 | 1+(−0.766−0.642i)T2 |
| 67 | 1+(−0.0603+0.342i)T+(−0.939−0.342i)T2 |
| 71 | 1+(0.766−1.32i)T+(−0.5−0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(0.939−0.342i)T2 |
| 83 | 1+(0.939−0.342i)T2 |
| 89 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+(−1.17+0.984i)T+(0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91396847228151103016869557294, −11.19695650726369249432850093526, −9.220039328163842485012296009008, −8.715545822993928387111914515755, −8.008646794304444163677104053839, −7.14468547815721637488562187364, −5.55918773180648514914797225710, −4.36598838527626367752588302057, −3.40459537878854720293399672875, −0.864307895157398535155276217590,
3.16794659852556745005572638295, 4.04047450003798566291325691540, 4.86139087454397805016920937725, 6.43120060138251007139008625511, 7.63821013592983897437007039599, 8.588258130273881292479443876364, 9.579274651870016506474292225442, 10.38469081680986122858317922659, 11.25171570023346297148621185333, 11.96584597253416399555273709629