L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 + 0.342i)4-s + (−1.43 − 1.20i)5-s + (−0.939 − 0.342i)9-s + (0.766 − 0.642i)11-s + (0.173 + 0.984i)12-s + (−1.43 + 1.20i)15-s + (0.766 − 0.642i)16-s + (1.76 + 0.642i)20-s + (0.939 − 0.342i)23-s + (0.439 + 2.49i)25-s + (−0.5 + 0.866i)27-s + (−0.326 + 0.118i)31-s + (−0.5 − 0.866i)33-s + 0.999·36-s + (0.939 − 1.62i)37-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 + 0.342i)4-s + (−1.43 − 1.20i)5-s + (−0.939 − 0.342i)9-s + (0.766 − 0.642i)11-s + (0.173 + 0.984i)12-s + (−1.43 + 1.20i)15-s + (0.766 − 0.642i)16-s + (1.76 + 0.642i)20-s + (0.939 − 0.342i)23-s + (0.439 + 2.49i)25-s + (−0.5 + 0.866i)27-s + (−0.326 + 0.118i)31-s + (−0.5 − 0.866i)33-s + 0.999·36-s + (0.939 − 1.62i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5063821624\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5063821624\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.173 + 0.984i)T \) |
| 11 | \( 1 + (-0.766 + 0.642i)T \) |
good | 2 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 5 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 37 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 - 0.347T + T^{2} \) |
| 59 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91396847228151103016869557294, −11.19695650726369249432850093526, −9.220039328163842485012296009008, −8.715545822993928387111914515755, −8.008646794304444163677104053839, −7.14468547815721637488562187364, −5.55918773180648514914797225710, −4.36598838527626367752588302057, −3.40459537878854720293399672875, −0.864307895157398535155276217590,
3.16794659852556745005572638295, 4.04047450003798566291325691540, 4.86139087454397805016920937725, 6.43120060138251007139008625511, 7.63821013592983897437007039599, 8.588258130273881292479443876364, 9.579274651870016506474292225442, 10.38469081680986122858317922659, 11.25171570023346297148621185333, 11.96584597253416399555273709629