L(s) = 1 | + 4·5-s − 11-s − 3·13-s − 17-s + 2·19-s − 4·23-s + 11·25-s − 8·31-s + 8·37-s + 10·43-s − 10·47-s − 3·53-s − 4·55-s − 14·59-s + 8·61-s − 12·65-s − 10·67-s + 5·71-s + 16·73-s + 11·79-s + 12·83-s − 4·85-s + 9·89-s + 8·95-s − 10·97-s + 101-s + 103-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 0.301·11-s − 0.832·13-s − 0.242·17-s + 0.458·19-s − 0.834·23-s + 11/5·25-s − 1.43·31-s + 1.31·37-s + 1.52·43-s − 1.45·47-s − 0.412·53-s − 0.539·55-s − 1.82·59-s + 1.02·61-s − 1.48·65-s − 1.22·67-s + 0.593·71-s + 1.87·73-s + 1.23·79-s + 1.31·83-s − 0.433·85-s + 0.953·89-s + 0.820·95-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29988 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29988 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.025627572\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.025627572\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 5 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 10 T + p T^{2} \) |
| 47 | \( 1 + 10 T + p T^{2} \) |
| 53 | \( 1 + 3 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 - 8 T + p T^{2} \) |
| 67 | \( 1 + 10 T + p T^{2} \) |
| 71 | \( 1 - 5 T + p T^{2} \) |
| 73 | \( 1 - 16 T + p T^{2} \) |
| 79 | \( 1 - 11 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 9 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.97906750049292, −14.45797478572740, −14.11486558550200, −13.57764667781177, −13.04986299308015, −12.61935037757258, −12.11297272279606, −11.23102842626176, −10.79337440609267, −10.21444372384678, −9.590211435989144, −9.416678510707384, −8.845538785905183, −7.842397063368304, −7.573718520909425, −6.621550420889357, −6.239542370782806, −5.633631858226494, −5.106012749006491, −4.575727799891536, −3.595112932860661, −2.782291447980040, −2.173551089023896, −1.707625068706323, −0.6456610334919439,
0.6456610334919439, 1.707625068706323, 2.173551089023896, 2.782291447980040, 3.595112932860661, 4.575727799891536, 5.106012749006491, 5.633631858226494, 6.239542370782806, 6.621550420889357, 7.573718520909425, 7.842397063368304, 8.845538785905183, 9.416678510707384, 9.590211435989144, 10.21444372384678, 10.79337440609267, 11.23102842626176, 12.11297272279606, 12.61935037757258, 13.04986299308015, 13.57764667781177, 14.11486558550200, 14.45797478572740, 14.97906750049292