Properties

Label 2-29988-1.1-c1-0-9
Degree $2$
Conductor $29988$
Sign $1$
Analytic cond. $239.455$
Root an. cond. $15.4743$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 6·13-s − 17-s + 2·19-s − 25-s − 8·29-s + 2·37-s + 2·41-s + 8·43-s − 8·47-s + 2·53-s + 12·59-s + 4·61-s − 12·65-s + 12·67-s − 8·73-s − 8·79-s − 2·85-s + 10·89-s + 4·95-s − 12·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.66·13-s − 0.242·17-s + 0.458·19-s − 1/5·25-s − 1.48·29-s + 0.328·37-s + 0.312·41-s + 1.21·43-s − 1.16·47-s + 0.274·53-s + 1.56·59-s + 0.512·61-s − 1.48·65-s + 1.46·67-s − 0.936·73-s − 0.900·79-s − 0.216·85-s + 1.05·89-s + 0.410·95-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29988 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29988 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29988\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(239.455\)
Root analytic conductor: \(15.4743\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29988,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.944886699\)
\(L(\frac12)\) \(\approx\) \(1.944886699\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92033386886470, −14.60747275354898, −14.19019192091677, −13.49420818976538, −13.02560512655082, −12.61903082830999, −11.92548308701613, −11.42695364775616, −10.86693941565370, −10.07181652922708, −9.740348274542234, −9.387423472243391, −8.713832390062314, −7.922595582493134, −7.399627663538299, −6.915647770174595, −6.194942068017204, −5.474567590415255, −5.231014158596817, −4.381544210874853, −3.737985486332155, −2.767691867071923, −2.281794252799006, −1.633748226340058, −0.5145497515938038, 0.5145497515938038, 1.633748226340058, 2.281794252799006, 2.767691867071923, 3.737985486332155, 4.381544210874853, 5.231014158596817, 5.474567590415255, 6.194942068017204, 6.915647770174595, 7.399627663538299, 7.922595582493134, 8.713832390062314, 9.387423472243391, 9.740348274542234, 10.07181652922708, 10.86693941565370, 11.42695364775616, 11.92548308701613, 12.61903082830999, 13.02560512655082, 13.49420818976538, 14.19019192091677, 14.60747275354898, 14.92033386886470

Graph of the $Z$-function along the critical line