Properties

Label 2-29e2-1.1-c1-0-13
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.80·2-s + 1.39·3-s + 1.24·4-s − 1.40·5-s − 2.51·6-s + 3.53·7-s + 1.35·8-s − 1.04·9-s + 2.52·10-s + 6.31·11-s + 1.74·12-s − 0.107·13-s − 6.36·14-s − 1.96·15-s − 4.93·16-s + 2.51·17-s + 1.88·18-s − 3.12·19-s − 1.74·20-s + 4.93·21-s − 11.3·22-s − 0.715·23-s + 1.89·24-s − 3.02·25-s + 0.193·26-s − 5.65·27-s + 4.40·28-s + ⋯
L(s)  = 1  − 1.27·2-s + 0.806·3-s + 0.622·4-s − 0.627·5-s − 1.02·6-s + 1.33·7-s + 0.480·8-s − 0.349·9-s + 0.799·10-s + 1.90·11-s + 0.502·12-s − 0.0297·13-s − 1.70·14-s − 0.506·15-s − 1.23·16-s + 0.610·17-s + 0.444·18-s − 0.716·19-s − 0.391·20-s + 1.07·21-s − 2.42·22-s − 0.149·23-s + 0.387·24-s − 0.605·25-s + 0.0378·26-s − 1.08·27-s + 0.831·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.131913276\)
\(L(\frac12)\) \(\approx\) \(1.131913276\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 + 1.80T + 2T^{2} \)
3 \( 1 - 1.39T + 3T^{2} \)
5 \( 1 + 1.40T + 5T^{2} \)
7 \( 1 - 3.53T + 7T^{2} \)
11 \( 1 - 6.31T + 11T^{2} \)
13 \( 1 + 0.107T + 13T^{2} \)
17 \( 1 - 2.51T + 17T^{2} \)
19 \( 1 + 3.12T + 19T^{2} \)
23 \( 1 + 0.715T + 23T^{2} \)
31 \( 1 - 5.88T + 31T^{2} \)
37 \( 1 - 2.60T + 37T^{2} \)
41 \( 1 - 5.18T + 41T^{2} \)
43 \( 1 - 1.54T + 43T^{2} \)
47 \( 1 - 8.45T + 47T^{2} \)
53 \( 1 - 7.16T + 53T^{2} \)
59 \( 1 - 2.47T + 59T^{2} \)
61 \( 1 + 13.0T + 61T^{2} \)
67 \( 1 - 0.706T + 67T^{2} \)
71 \( 1 - 1.08T + 71T^{2} \)
73 \( 1 - 14.1T + 73T^{2} \)
79 \( 1 + 13.8T + 79T^{2} \)
83 \( 1 - 0.291T + 83T^{2} \)
89 \( 1 - 8.90T + 89T^{2} \)
97 \( 1 + 3.62T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.919302454799454674842466820901, −9.068818930443005956629365004052, −8.583277769575542850006955293976, −7.932970711658753698421671444060, −7.32809438260378461988532477288, −6.08218700706782918950204605971, −4.52923663963947328185807591770, −3.81949900890107972198674256022, −2.19635691207899428415085200517, −1.09515077037431412824611664468, 1.09515077037431412824611664468, 2.19635691207899428415085200517, 3.81949900890107972198674256022, 4.52923663963947328185807591770, 6.08218700706782918950204605971, 7.32809438260378461988532477288, 7.932970711658753698421671444060, 8.583277769575542850006955293976, 9.068818930443005956629365004052, 9.919302454799454674842466820901

Graph of the $Z$-function along the critical line