Properties

Label 2-29e2-1.1-c1-0-2
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.171·2-s − 1.12·3-s − 1.97·4-s − 2.82·5-s − 0.192·6-s − 2.92·7-s − 0.679·8-s − 1.73·9-s − 0.483·10-s − 3.99·11-s + 2.21·12-s + 2.81·13-s − 0.500·14-s + 3.17·15-s + 3.82·16-s + 0.482·17-s − 0.296·18-s − 3.04·19-s + 5.57·20-s + 3.28·21-s − 0.682·22-s + 5.51·23-s + 0.763·24-s + 2.99·25-s + 0.480·26-s + 5.32·27-s + 5.76·28-s + ⋯
L(s)  = 1  + 0.120·2-s − 0.649·3-s − 0.985·4-s − 1.26·5-s − 0.0784·6-s − 1.10·7-s − 0.240·8-s − 0.578·9-s − 0.152·10-s − 1.20·11-s + 0.639·12-s + 0.779·13-s − 0.133·14-s + 0.820·15-s + 0.956·16-s + 0.117·17-s − 0.0699·18-s − 0.699·19-s + 1.24·20-s + 0.717·21-s − 0.145·22-s + 1.14·23-s + 0.155·24-s + 0.598·25-s + 0.0942·26-s + 1.02·27-s + 1.08·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2630973139\)
\(L(\frac12)\) \(\approx\) \(0.2630973139\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 0.171T + 2T^{2} \)
3 \( 1 + 1.12T + 3T^{2} \)
5 \( 1 + 2.82T + 5T^{2} \)
7 \( 1 + 2.92T + 7T^{2} \)
11 \( 1 + 3.99T + 11T^{2} \)
13 \( 1 - 2.81T + 13T^{2} \)
17 \( 1 - 0.482T + 17T^{2} \)
19 \( 1 + 3.04T + 19T^{2} \)
23 \( 1 - 5.51T + 23T^{2} \)
31 \( 1 + 3.85T + 31T^{2} \)
37 \( 1 + 11.5T + 37T^{2} \)
41 \( 1 + 5.10T + 41T^{2} \)
43 \( 1 - 8.21T + 43T^{2} \)
47 \( 1 - 2.38T + 47T^{2} \)
53 \( 1 + 0.446T + 53T^{2} \)
59 \( 1 - 1.24T + 59T^{2} \)
61 \( 1 + 8.59T + 61T^{2} \)
67 \( 1 + 0.944T + 67T^{2} \)
71 \( 1 - 5.97T + 71T^{2} \)
73 \( 1 - 0.483T + 73T^{2} \)
79 \( 1 - 1.85T + 79T^{2} \)
83 \( 1 - 4.35T + 83T^{2} \)
89 \( 1 - 15.5T + 89T^{2} \)
97 \( 1 - 2.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47905412121954092065970427304, −9.192249751753887083184060426213, −8.562178649225386819996564275847, −7.74294946136607039435436977133, −6.66888815720432359000066946431, −5.65733387505460032816084082833, −4.90722893189871953068718608086, −3.76834889048235215287294082997, −3.07870985183737047725896424491, −0.40020865405981684223286852076, 0.40020865405981684223286852076, 3.07870985183737047725896424491, 3.76834889048235215287294082997, 4.90722893189871953068718608086, 5.65733387505460032816084082833, 6.66888815720432359000066946431, 7.74294946136607039435436977133, 8.562178649225386819996564275847, 9.192249751753887083184060426213, 10.47905412121954092065970427304

Graph of the $Z$-function along the critical line