L(s) = 1 | + 1.80·2-s − 0.445·3-s + 1.24·4-s + 0.356·5-s − 0.801·6-s − 4.04·7-s − 1.35·8-s − 2.80·9-s + 0.643·10-s − 2.91·11-s − 0.554·12-s + 5.18·13-s − 7.29·14-s − 0.158·15-s − 4.93·16-s − 1.10·17-s − 5.04·18-s − 2.04·19-s + 0.445·20-s + 1.80·21-s − 5.24·22-s − 4.13·23-s + 0.603·24-s − 4.87·25-s + 9.34·26-s + 2.58·27-s − 5.04·28-s + ⋯ |
L(s) = 1 | + 1.27·2-s − 0.256·3-s + 0.623·4-s + 0.159·5-s − 0.327·6-s − 1.53·7-s − 0.479·8-s − 0.933·9-s + 0.203·10-s − 0.877·11-s − 0.160·12-s + 1.43·13-s − 1.94·14-s − 0.0410·15-s − 1.23·16-s − 0.269·17-s − 1.19·18-s − 0.470·19-s + 0.0995·20-s + 0.393·21-s − 1.11·22-s − 0.862·23-s + 0.123·24-s − 0.974·25-s + 1.83·26-s + 0.496·27-s − 0.954·28-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1−1.80T+2T2 |
| 3 | 1+0.445T+3T2 |
| 5 | 1−0.356T+5T2 |
| 7 | 1+4.04T+7T2 |
| 11 | 1+2.91T+11T2 |
| 13 | 1−5.18T+13T2 |
| 17 | 1+1.10T+17T2 |
| 19 | 1+2.04T+19T2 |
| 23 | 1+4.13T+23T2 |
| 31 | 1−6.35T+31T2 |
| 37 | 1−2.91T+37T2 |
| 41 | 1+0.396T+41T2 |
| 43 | 1+5.74T+43T2 |
| 47 | 1−7.80T+47T2 |
| 53 | 1+4.35T+53T2 |
| 59 | 1+9.10T+59T2 |
| 61 | 1−6.04T+61T2 |
| 67 | 1−0.374T+67T2 |
| 71 | 1+11.4T+71T2 |
| 73 | 1−8.94T+73T2 |
| 79 | 1−0.594T+79T2 |
| 83 | 1+9.43T+83T2 |
| 89 | 1+1.42T+89T2 |
| 97 | 1+15.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.888248606523496886580597135121, −8.950124711432689622074153127905, −8.107137431893207583710431436740, −6.57056055058688933030254316122, −6.09688110311587608278971942747, −5.52908969738945855010800836708, −4.24688492911943017040765548776, −3.36770041771616000057194031009, −2.56346244963340507972511034433, 0,
2.56346244963340507972511034433, 3.36770041771616000057194031009, 4.24688492911943017040765548776, 5.52908969738945855010800836708, 6.09688110311587608278971942747, 6.57056055058688933030254316122, 8.107137431893207583710431436740, 8.950124711432689622074153127905, 9.888248606523496886580597135121