Properties

Label 2-29e2-1.1-c1-0-52
Degree $2$
Conductor $841$
Sign $-1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.80·2-s − 0.445·3-s + 1.24·4-s + 0.356·5-s − 0.801·6-s − 4.04·7-s − 1.35·8-s − 2.80·9-s + 0.643·10-s − 2.91·11-s − 0.554·12-s + 5.18·13-s − 7.29·14-s − 0.158·15-s − 4.93·16-s − 1.10·17-s − 5.04·18-s − 2.04·19-s + 0.445·20-s + 1.80·21-s − 5.24·22-s − 4.13·23-s + 0.603·24-s − 4.87·25-s + 9.34·26-s + 2.58·27-s − 5.04·28-s + ⋯
L(s)  = 1  + 1.27·2-s − 0.256·3-s + 0.623·4-s + 0.159·5-s − 0.327·6-s − 1.53·7-s − 0.479·8-s − 0.933·9-s + 0.203·10-s − 0.877·11-s − 0.160·12-s + 1.43·13-s − 1.94·14-s − 0.0410·15-s − 1.23·16-s − 0.269·17-s − 1.19·18-s − 0.470·19-s + 0.0995·20-s + 0.393·21-s − 1.11·22-s − 0.862·23-s + 0.123·24-s − 0.974·25-s + 1.83·26-s + 0.496·27-s − 0.954·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $-1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 1.80T + 2T^{2} \)
3 \( 1 + 0.445T + 3T^{2} \)
5 \( 1 - 0.356T + 5T^{2} \)
7 \( 1 + 4.04T + 7T^{2} \)
11 \( 1 + 2.91T + 11T^{2} \)
13 \( 1 - 5.18T + 13T^{2} \)
17 \( 1 + 1.10T + 17T^{2} \)
19 \( 1 + 2.04T + 19T^{2} \)
23 \( 1 + 4.13T + 23T^{2} \)
31 \( 1 - 6.35T + 31T^{2} \)
37 \( 1 - 2.91T + 37T^{2} \)
41 \( 1 + 0.396T + 41T^{2} \)
43 \( 1 + 5.74T + 43T^{2} \)
47 \( 1 - 7.80T + 47T^{2} \)
53 \( 1 + 4.35T + 53T^{2} \)
59 \( 1 + 9.10T + 59T^{2} \)
61 \( 1 - 6.04T + 61T^{2} \)
67 \( 1 - 0.374T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 - 8.94T + 73T^{2} \)
79 \( 1 - 0.594T + 79T^{2} \)
83 \( 1 + 9.43T + 83T^{2} \)
89 \( 1 + 1.42T + 89T^{2} \)
97 \( 1 + 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.888248606523496886580597135121, −8.950124711432689622074153127905, −8.107137431893207583710431436740, −6.57056055058688933030254316122, −6.09688110311587608278971942747, −5.52908969738945855010800836708, −4.24688492911943017040765548776, −3.36770041771616000057194031009, −2.56346244963340507972511034433, 0, 2.56346244963340507972511034433, 3.36770041771616000057194031009, 4.24688492911943017040765548776, 5.52908969738945855010800836708, 6.09688110311587608278971942747, 6.57056055058688933030254316122, 8.107137431893207583710431436740, 8.950124711432689622074153127905, 9.888248606523496886580597135121

Graph of the $Z$-function along the critical line