L(s) = 1 | + (1.26 − 1.00i)2-s + (1.57 − 0.360i)3-s + (0.137 − 0.602i)4-s + (1.77 + 2.23i)5-s + (1.63 − 2.04i)6-s + (−0.497 − 2.18i)7-s + (0.970 + 2.01i)8-s + (−0.344 + 0.165i)9-s + (4.50 + 1.02i)10-s + (−1.56 + 3.25i)11-s − 1.00i·12-s + (3.81 + 1.83i)13-s + (−2.82 − 2.25i)14-s + (3.61 + 2.87i)15-s + (4.37 + 2.10i)16-s − 6.61i·17-s + ⋯ |
L(s) = 1 | + (0.894 − 0.713i)2-s + (0.910 − 0.207i)3-s + (0.0687 − 0.301i)4-s + (0.795 + 0.997i)5-s + (0.666 − 0.835i)6-s + (−0.188 − 0.823i)7-s + (0.343 + 0.712i)8-s + (−0.114 + 0.0552i)9-s + (1.42 + 0.324i)10-s + (−0.473 + 0.982i)11-s − 0.288i·12-s + (1.05 + 0.509i)13-s + (−0.755 − 0.602i)14-s + (0.932 + 0.743i)15-s + (1.09 + 0.526i)16-s − 1.60i·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(0.959+0.280i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(0.959+0.280i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
0.959+0.280i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), 0.959+0.280i)
|
Particular Values
L(1) |
≈ |
3.56357−0.510476i |
L(21) |
≈ |
3.56357−0.510476i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(−1.26+1.00i)T+(0.445−1.94i)T2 |
| 3 | 1+(−1.57+0.360i)T+(2.70−1.30i)T2 |
| 5 | 1+(−1.77−2.23i)T+(−1.11+4.87i)T2 |
| 7 | 1+(0.497+2.18i)T+(−6.30+3.03i)T2 |
| 11 | 1+(1.56−3.25i)T+(−6.85−8.60i)T2 |
| 13 | 1+(−3.81−1.83i)T+(8.10+10.1i)T2 |
| 17 | 1+6.61iT−17T2 |
| 19 | 1+(1.80+0.412i)T+(17.1+8.24i)T2 |
| 23 | 1+(−2.01+2.53i)T+(−5.11−22.4i)T2 |
| 31 | 1+(0.852−0.679i)T+(6.89−30.2i)T2 |
| 37 | 1+(3.77+7.84i)T+(−23.0+28.9i)T2 |
| 41 | 1−2.85iT−41T2 |
| 43 | 1+(2.16+1.72i)T+(9.56+41.9i)T2 |
| 47 | 1+(−3.03+6.30i)T+(−29.3−36.7i)T2 |
| 53 | 1+(1.24+1.56i)T+(−11.7+51.6i)T2 |
| 59 | 1+5.09T+59T2 |
| 61 | 1+(−1.57+0.360i)T+(54.9−26.4i)T2 |
| 67 | 1+(9.43−4.54i)T+(41.7−52.3i)T2 |
| 71 | 1+(−1.37−0.662i)T+(44.2+55.5i)T2 |
| 73 | 1+(−0.228−0.181i)T+(16.2+71.1i)T2 |
| 79 | 1+(2.20+4.58i)T+(−49.2+61.7i)T2 |
| 83 | 1+(1.76−7.74i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−6.80+5.42i)T+(19.8−86.7i)T2 |
| 97 | 1+(16.1+3.68i)T+(87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43799395037140158032300775303, −9.441775439072635246256442818914, −8.533374657031389249073099125875, −7.40104474000624904890102273759, −6.87023441184350434624557932110, −5.58441961295847694734647593917, −4.49122125106732550969704939503, −3.47183867962492087864633506577, −2.66562146827826425217981085698, −1.95645642266319388705832797008,
1.46872239749463051132675734107, 3.03333062305319084686000263179, 3.89145938384438975128674028620, 5.13197325992148277534690842822, 5.94472390643231611120454723163, 6.15259605036803085048843365473, 7.903961569297964390331995437891, 8.618188044414003652862840199657, 9.052160203208064210463738058588, 10.06682987919344548204969540805