L(s) = 1 | + (4.06e6 + 1.02e6i)2-s + 4.78e10i·3-s + (1.55e13 + 8.31e12i)4-s − 4.02e15·5-s + (−4.88e16 + 1.94e17i)6-s − 5.21e18i·7-s + (5.45e19 + 4.96e19i)8-s − 1.30e21·9-s + (−1.63e22 − 4.10e21i)10-s − 5.34e22i·11-s + (−3.97e23 + 7.41e23i)12-s + 3.07e24·13-s + (5.32e24 − 2.12e25i)14-s − 1.92e26i·15-s + (1.71e26 + 2.57e26i)16-s − 1.03e27·17-s + ⋯ |
L(s) = 1 | + (0.969 + 0.243i)2-s + 1.52i·3-s + (0.881 + 0.472i)4-s − 1.68·5-s + (−0.371 + 1.47i)6-s − 1.33i·7-s + (0.739 + 0.672i)8-s − 1.32·9-s + (−1.63 − 0.410i)10-s − 0.656i·11-s + (−0.719 + 1.34i)12-s + 0.956·13-s + (0.324 − 1.29i)14-s − 2.57i·15-s + (0.553 + 0.832i)16-s − 0.885·17-s + ⋯ |
Λ(s)=(=(4s/2ΓC(s)L(s)(0.881+0.472i)Λ(45−s)
Λ(s)=(=(4s/2ΓC(s+22)L(s)(0.881+0.472i)Λ(1−s)
Degree: |
2 |
Conductor: |
4
= 22
|
Sign: |
0.881+0.472i
|
Analytic conductor: |
49.0478 |
Root analytic conductor: |
7.00342 |
Motivic weight: |
44 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4, ( :22), 0.881+0.472i)
|
Particular Values
L(245) |
≈ |
1.762283713 |
L(21) |
≈ |
1.762283713 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4.06e6−1.02e6i)T |
good | 3 | 1−4.78e10iT−9.84e20T2 |
| 5 | 1+4.02e15T+5.68e30T2 |
| 7 | 1+5.21e18iT−1.52e37T2 |
| 11 | 1+5.34e22iT−6.62e45T2 |
| 13 | 1−3.07e24T+1.03e49T2 |
| 17 | 1+1.03e27T+1.37e54T2 |
| 19 | 1+1.75e28iT−1.84e56T2 |
| 23 | 1+1.30e29iT−8.24e59T2 |
| 29 | 1+1.16e32T+2.21e64T2 |
| 31 | 1−2.21e32iT−4.16e65T2 |
| 37 | 1−1.46e34T+1.00e69T2 |
| 41 | 1+2.56e35T+9.17e70T2 |
| 43 | 1−7.73e34iT−7.45e71T2 |
| 47 | 1+1.06e37iT−3.73e73T2 |
| 53 | 1−5.04e37T+7.38e75T2 |
| 59 | 1+1.45e39iT−8.26e77T2 |
| 61 | 1−2.53e39T+3.58e78T2 |
| 67 | 1+1.88e40iT−2.22e80T2 |
| 71 | 1+6.82e40iT−2.85e81T2 |
| 73 | 1+5.18e40T+9.68e81T2 |
| 79 | 1+1.41e41iT−3.13e83T2 |
| 83 | 1−2.71e41iT−2.75e84T2 |
| 89 | 1+5.08e42T+5.93e85T2 |
| 97 | 1+2.11e43T+2.61e87T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.07170672153672844095979623335, −13.48053377120867121856834642847, −11.32411772896041422972284793730, −10.82434914633751778971238699097, −8.454726154844239531821935665692, −6.95379371595648361853236207846, −4.83068417071982694024967430554, −3.94095464020444526449317326390, −3.40289829374845905655311029416, −0.35047397668912534562144092172,
1.31410637660700281384383909691, 2.53497016082375979071352675982, 4.01335976121415520771442683049, 5.86345465688891884619685939598, 7.15335099116746050129664936446, 8.304972327016775437926869800487, 11.40881633678683976565977778410, 12.13404653906992732178133286895, 13.01465382338941740265379463455, 14.83474096729184455901036377053