L(s) = 1 | + (3.87e3 − 1.09e4i)2-s + (−2.14e6 − 2.14e6i)3-s + (−1.04e8 − 8.45e7i)4-s + (1.53e9 − 1.53e9i)5-s + (−3.16e10 + 1.50e10i)6-s + 9.29e10i·7-s + (−1.32e12 + 8.10e11i)8-s + 1.55e12i·9-s + (−1.08e13 − 2.27e13i)10-s + (−6.85e13 + 6.85e13i)11-s + (4.20e13 + 4.04e14i)12-s + (−1.09e15 − 1.09e15i)13-s + (1.01e15 + 3.60e14i)14-s − 6.57e15·15-s + (3.70e15 + 1.76e16i)16-s + 5.24e16·17-s + ⋯ |
L(s) = 1 | + (0.334 − 0.942i)2-s + (−0.775 − 0.775i)3-s + (−0.776 − 0.630i)4-s + (0.562 − 0.562i)5-s + (−0.990 + 0.471i)6-s + 0.362i·7-s + (−0.853 + 0.521i)8-s + 0.203i·9-s + (−0.342 − 0.718i)10-s + (−0.598 + 0.598i)11-s + (0.113 + 1.09i)12-s + (−0.999 − 0.999i)13-s + (0.341 + 0.121i)14-s − 0.872·15-s + (0.205 + 0.978i)16-s + 1.28·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.564+0.825i)Λ(28−s)
Λ(s)=(=(16s/2ΓC(s+27/2)L(s)(0.564+0.825i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.564+0.825i
|
Analytic conductor: |
73.8968 |
Root analytic conductor: |
8.59633 |
Motivic weight: |
27 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :27/2), 0.564+0.825i)
|
Particular Values
L(14) |
≈ |
1.207615135 |
L(21) |
≈ |
1.207615135 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−3.87e3+1.09e4i)T |
good | 3 | 1+(2.14e6+2.14e6i)T+7.62e12iT2 |
| 5 | 1+(−1.53e9+1.53e9i)T−7.45e18iT2 |
| 7 | 1−9.29e10iT−6.57e22T2 |
| 11 | 1+(6.85e13−6.85e13i)T−1.31e28iT2 |
| 13 | 1+(1.09e15+1.09e15i)T+1.19e30iT2 |
| 17 | 1−5.24e16T+1.66e33T2 |
| 19 | 1+(−1.10e17−1.10e17i)T+3.36e34iT2 |
| 23 | 1−2.41e18iT−5.84e36T2 |
| 29 | 1+(−3.79e19−3.79e19i)T+3.05e39iT2 |
| 31 | 1+2.62e19T+1.84e40T2 |
| 37 | 1+(1.08e21−1.08e21i)T−2.19e42iT2 |
| 41 | 1+4.76e21iT−3.50e43T2 |
| 43 | 1+(−9.21e21+9.21e21i)T−1.26e44iT2 |
| 47 | 1+1.68e21T+1.40e45T2 |
| 53 | 1+(6.29e22−6.29e22i)T−3.59e46iT2 |
| 59 | 1+(7.91e23−7.91e23i)T−6.50e47iT2 |
| 61 | 1+(6.67e23+6.67e23i)T+1.59e48iT2 |
| 67 | 1+(3.91e24+3.91e24i)T+2.01e49iT2 |
| 71 | 1−3.66e24iT−9.63e49T2 |
| 73 | 1+2.35e24iT−2.04e50T2 |
| 79 | 1−3.15e25T+1.72e51T2 |
| 83 | 1+(−9.31e25−9.31e25i)T+6.53e51iT2 |
| 89 | 1+2.63e26iT−4.30e52T2 |
| 97 | 1+1.60e25T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.33269836989662281258504520160, −12.26540959432471022853037808192, −10.44308021476296877815869146133, −9.396073310656457900374302960697, −7.56914619556892848955171713876, −5.63835062414147678606913865351, −5.20896005015662794926260790204, −3.16350156881937103193129127171, −1.74532930600629333452624398630, −0.867411249936093623985480726274,
0.36984222389893286625630314997, 2.77336866124200143368850167166, 4.36444919591846181603385218167, 5.33266993203777442105300665117, 6.42094311887759022224465687105, 7.73499733802200691347321689624, 9.527753318223561471567586835045, 10.54683001958876509009885528770, 12.05717822230937319248976171182, 13.72411278437123224598515039144