L(s) = 1 | + (−2.70e3 + 1.12e4i)2-s + (−3.16e6 − 3.16e6i)3-s + (−1.19e8 − 6.08e7i)4-s + (−9.16e8 + 9.16e8i)5-s + (4.42e10 − 2.71e10i)6-s − 2.63e11i·7-s + (1.00e12 − 1.18e12i)8-s + 1.24e13i·9-s + (−7.85e12 − 1.28e13i)10-s + (1.27e14 − 1.27e14i)11-s + (1.86e14 + 5.71e14i)12-s + (4.89e13 + 4.89e13i)13-s + (2.96e15 + 7.11e14i)14-s + 5.80e15·15-s + (1.06e16 + 1.45e16i)16-s − 1.67e16·17-s + ⋯ |
L(s) = 1 | + (−0.233 + 0.972i)2-s + (−1.14 − 1.14i)3-s + (−0.891 − 0.453i)4-s + (−0.335 + 0.335i)5-s + (1.38 − 0.847i)6-s − 1.02i·7-s + (0.648 − 0.761i)8-s + 1.62i·9-s + (−0.248 − 0.404i)10-s + (1.11 − 1.11i)11-s + (0.502 + 1.54i)12-s + (0.0448 + 0.0448i)13-s + (0.999 + 0.239i)14-s + 0.770·15-s + (0.588 + 0.808i)16-s − 0.411·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.853+0.521i)Λ(28−s)
Λ(s)=(=(16s/2ΓC(s+27/2)L(s)(0.853+0.521i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.853+0.521i
|
Analytic conductor: |
73.8968 |
Root analytic conductor: |
8.59633 |
Motivic weight: |
27 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :27/2), 0.853+0.521i)
|
Particular Values
L(14) |
≈ |
0.9261744993 |
L(21) |
≈ |
0.9261744993 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.70e3−1.12e4i)T |
good | 3 | 1+(3.16e6+3.16e6i)T+7.62e12iT2 |
| 5 | 1+(9.16e8−9.16e8i)T−7.45e18iT2 |
| 7 | 1+2.63e11iT−6.57e22T2 |
| 11 | 1+(−1.27e14+1.27e14i)T−1.31e28iT2 |
| 13 | 1+(−4.89e13−4.89e13i)T+1.19e30iT2 |
| 17 | 1+1.67e16T+1.66e33T2 |
| 19 | 1+(1.31e17+1.31e17i)T+3.36e34iT2 |
| 23 | 1−3.03e18iT−5.84e36T2 |
| 29 | 1+(−5.07e19−5.07e19i)T+3.05e39iT2 |
| 31 | 1−1.15e20T+1.84e40T2 |
| 37 | 1+(1.72e21−1.72e21i)T−2.19e42iT2 |
| 41 | 1+4.98e21iT−3.50e43T2 |
| 43 | 1+(−1.24e22+1.24e22i)T−1.26e44iT2 |
| 47 | 1−2.25e22T+1.40e45T2 |
| 53 | 1+(−1.09e23+1.09e23i)T−3.59e46iT2 |
| 59 | 1+(−4.56e23+4.56e23i)T−6.50e47iT2 |
| 61 | 1+(−1.24e24−1.24e24i)T+1.59e48iT2 |
| 67 | 1+(−1.56e24−1.56e24i)T+2.01e49iT2 |
| 71 | 1−3.51e24iT−9.63e49T2 |
| 73 | 1−2.24e25iT−2.04e50T2 |
| 79 | 1+4.59e25T+1.72e51T2 |
| 83 | 1+(−4.56e25−4.56e25i)T+6.53e51iT2 |
| 89 | 1+2.12e26iT−4.30e52T2 |
| 97 | 1−6.87e26T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.26148154185667407769155624682, −11.66150172616573217318358111371, −10.61234676340945623701353811133, −8.639841076205709328532987886368, −7.12191107527070477830316878000, −6.72016396187780881171999186085, −5.46675042132031623912795765353, −3.88715036398401306413961376906, −1.24476255522736685340585146496, −0.56308308266378782693149875208,
0.63675391437610185963414441004, 2.26701798500367960980060987519, 4.12468263878323037458248734119, 4.66164421518737569439066729525, 6.16903874714335691100423018299, 8.578873388861248349733317199197, 9.648104022119705013817284908266, 10.66067216875668274899673370655, 11.99414076220771820109827826391, 12.31189990327391707802023853376