L(s) = 1 | + (0.836 − 2.70i)2-s + (1.98 + 1.98i)3-s + (−6.59 − 4.52i)4-s + (−0.596 + 0.596i)5-s + (7.01 − 3.69i)6-s + 29.0i·7-s + (−17.7 + 14.0i)8-s − 19.1i·9-s + (1.11 + 2.11i)10-s + (12.1 − 12.1i)11-s + (−4.11 − 22.0i)12-s + (−48.5 − 48.5i)13-s + (78.5 + 24.3i)14-s − 2.36·15-s + (23.0 + 59.6i)16-s + 86.7·17-s + ⋯ |
L(s) = 1 | + (0.295 − 0.955i)2-s + (0.381 + 0.381i)3-s + (−0.824 − 0.565i)4-s + (−0.0533 + 0.0533i)5-s + (0.477 − 0.251i)6-s + 1.57i·7-s + (−0.784 + 0.620i)8-s − 0.708i·9-s + (0.0351 + 0.0667i)10-s + (0.332 − 0.332i)11-s + (−0.0991 − 0.530i)12-s + (−1.03 − 1.03i)13-s + (1.50 + 0.464i)14-s − 0.0407·15-s + (0.360 + 0.932i)16-s + 1.23·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.690+0.723i)Λ(4−s)
Λ(s)=(=(16s/2ΓC(s+3/2)L(s)(0.690+0.723i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.690+0.723i
|
Analytic conductor: |
0.944030 |
Root analytic conductor: |
0.971612 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :3/2), 0.690+0.723i)
|
Particular Values
L(2) |
≈ |
1.05836−0.452995i |
L(21) |
≈ |
1.05836−0.452995i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.836+2.70i)T |
good | 3 | 1+(−1.98−1.98i)T+27iT2 |
| 5 | 1+(0.596−0.596i)T−125iT2 |
| 7 | 1−29.0iT−343T2 |
| 11 | 1+(−12.1+12.1i)T−1.33e3iT2 |
| 13 | 1+(48.5+48.5i)T+2.19e3iT2 |
| 17 | 1−86.7T+4.91e3T2 |
| 19 | 1+(54.8+54.8i)T+6.85e3iT2 |
| 23 | 1−70.2iT−1.21e4T2 |
| 29 | 1+(−63.4−63.4i)T+2.43e4iT2 |
| 31 | 1+8.86T+2.97e4T2 |
| 37 | 1+(21.7−21.7i)T−5.06e4iT2 |
| 41 | 1+153.iT−6.89e4T2 |
| 43 | 1+(120.−120.i)T−7.95e4iT2 |
| 47 | 1+99.9T+1.03e5T2 |
| 53 | 1+(−389.+389.i)T−1.48e5iT2 |
| 59 | 1+(324.−324.i)T−2.05e5iT2 |
| 61 | 1+(0.339+0.339i)T+2.26e5iT2 |
| 67 | 1+(−565.−565.i)T+3.00e5iT2 |
| 71 | 1+419.iT−3.57e5T2 |
| 73 | 1−374.iT−3.89e5T2 |
| 79 | 1+705.T+4.93e5T2 |
| 83 | 1+(947.+947.i)T+5.71e5iT2 |
| 89 | 1+4.72iT−7.04e5T2 |
| 97 | 1−379.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.81499708562010550193179178208, −17.58272052045953503232993107530, −15.30440907487681536633485048095, −14.62756423135920295629486760238, −12.70323518409211395850602867151, −11.73893113873026473213007782786, −9.874240689495280735030158463244, −8.742826986623313927493260323542, −5.47840845349865906440710770840, −3.06015101561518229796816170911,
4.40303099004854676081851310537, 6.92156721859609382299166795991, 8.013605696082205649768765020321, 10.05390139051174890333001209254, 12.41873289532976287133991246237, 13.88395681024504428049634726154, 14.47141120147056739317482069840, 16.53554221390283811333753072371, 17.02127008544090049789418520416, 18.78089501296863540170105465116