L(s) = 1 | + (−5.25 − 2.08i)2-s + (−3.18 − 3.18i)3-s + (23.3 + 21.9i)4-s + (−67.3 + 67.3i)5-s + (10.0 + 23.3i)6-s + 148. i·7-s + (−76.8 − 163. i)8-s − 222. i·9-s + (494. − 213. i)10-s + (−256. + 256. i)11-s + (−4.40 − 143. i)12-s + (−218. − 218. i)13-s + (309. − 780. i)14-s + 428.·15-s + (62.6 + 1.02e3i)16-s − 463.·17-s + ⋯ |
L(s) = 1 | + (−0.929 − 0.368i)2-s + (−0.203 − 0.203i)3-s + (0.728 + 0.685i)4-s + (−1.20 + 1.20i)5-s + (0.114 + 0.264i)6-s + 1.14i·7-s + (−0.424 − 0.905i)8-s − 0.916i·9-s + (1.56 − 0.676i)10-s + (−0.638 + 0.638i)11-s + (−0.00883 − 0.288i)12-s + (−0.358 − 0.358i)13-s + (0.421 − 1.06i)14-s + 0.491·15-s + (0.0612 + 0.998i)16-s − 0.388·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(−0.438−0.898i)Λ(6−s)
Λ(s)=(=(16s/2ΓC(s+5/2)L(s)(−0.438−0.898i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
−0.438−0.898i
|
Analytic conductor: |
2.56614 |
Root analytic conductor: |
1.60191 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :5/2), −0.438−0.898i)
|
Particular Values
L(3) |
≈ |
0.210995+0.337730i |
L(21) |
≈ |
0.210995+0.337730i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(5.25+2.08i)T |
good | 3 | 1+(3.18+3.18i)T+243iT2 |
| 5 | 1+(67.3−67.3i)T−3.12e3iT2 |
| 7 | 1−148.iT−1.68e4T2 |
| 11 | 1+(256.−256.i)T−1.61e5iT2 |
| 13 | 1+(218.+218.i)T+3.71e5iT2 |
| 17 | 1+463.T+1.41e6T2 |
| 19 | 1+(−920.−920.i)T+2.47e6iT2 |
| 23 | 1−1.05e3iT−6.43e6T2 |
| 29 | 1+(−1.29e3−1.29e3i)T+2.05e7iT2 |
| 31 | 1−1.00e4T+2.86e7T2 |
| 37 | 1+(9.40e3−9.40e3i)T−6.93e7iT2 |
| 41 | 1−368.iT−1.15e8T2 |
| 43 | 1+(9.16e3−9.16e3i)T−1.47e8iT2 |
| 47 | 1+7.63e3T+2.29e8T2 |
| 53 | 1+(1.24e3−1.24e3i)T−4.18e8iT2 |
| 59 | 1+(−1.62e4+1.62e4i)T−7.14e8iT2 |
| 61 | 1+(1.39e3+1.39e3i)T+8.44e8iT2 |
| 67 | 1+(1.74e4+1.74e4i)T+1.35e9iT2 |
| 71 | 1−6.74e4iT−1.80e9T2 |
| 73 | 1+1.95e4iT−2.07e9T2 |
| 79 | 1+4.39e4T+3.07e9T2 |
| 83 | 1+(−7.32e4−7.32e4i)T+3.93e9iT2 |
| 89 | 1−8.86e4iT−5.58e9T2 |
| 97 | 1+7.36e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.47743739538236651393092908756, −17.75346985063103747577406280728, −15.64505095177883040817335796060, −15.12454182340914749096485639956, −12.27938409902557999445249061825, −11.58502301029810087392385118216, −10.01022599308652725891341363539, −8.143753279263710150802104525325, −6.74994216799754702145016294433, −3.01657100555993255521868084764,
0.43939093951647305052290854050, 4.80753998200646947807092815008, 7.45027409225376373282120830400, 8.540704259673022286301772849491, 10.43719155874263528887439559439, 11.67565796960300762207303695214, 13.62289444803675834282333149306, 15.71346196556097066651134229779, 16.36340503006134644564080391006, 17.27902877545504515397432796494