L(s) = 1 | + (−3.36 + 4.54i)2-s + (16.8 − 16.8i)3-s + (−9.38 − 30.5i)4-s + (66.0 + 66.0i)5-s + (20.0 + 133. i)6-s − 75.3i·7-s + (170. + 60.2i)8-s − 327. i·9-s + (−522. + 78.2i)10-s + (−79.0 − 79.0i)11-s + (−675. − 358. i)12-s + (−238. + 238. i)13-s + (342. + 253. i)14-s + 2.23e3·15-s + (−847. + 574. i)16-s − 1.75e3·17-s + ⋯ |
L(s) = 1 | + (−0.594 + 0.804i)2-s + (1.08 − 1.08i)3-s + (−0.293 − 0.956i)4-s + (1.18 + 1.18i)5-s + (0.227 + 1.51i)6-s − 0.580i·7-s + (0.943 + 0.332i)8-s − 1.34i·9-s + (−1.65 + 0.247i)10-s + (−0.197 − 0.197i)11-s + (−1.35 − 0.718i)12-s + (−0.391 + 0.391i)13-s + (0.467 + 0.345i)14-s + 2.55·15-s + (−0.828 + 0.560i)16-s − 1.47·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.979−0.201i)Λ(6−s)
Λ(s)=(=(16s/2ΓC(s+5/2)L(s)(0.979−0.201i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.979−0.201i
|
Analytic conductor: |
2.56614 |
Root analytic conductor: |
1.60191 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :5/2), 0.979−0.201i)
|
Particular Values
L(3) |
≈ |
1.45190+0.147426i |
L(21) |
≈ |
1.45190+0.147426i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.36−4.54i)T |
good | 3 | 1+(−16.8+16.8i)T−243iT2 |
| 5 | 1+(−66.0−66.0i)T+3.12e3iT2 |
| 7 | 1+75.3iT−1.68e4T2 |
| 11 | 1+(79.0+79.0i)T+1.61e5iT2 |
| 13 | 1+(238.−238.i)T−3.71e5iT2 |
| 17 | 1+1.75e3T+1.41e6T2 |
| 19 | 1+(311.−311.i)T−2.47e6iT2 |
| 23 | 1−1.30e3iT−6.43e6T2 |
| 29 | 1+(−2.58e3+2.58e3i)T−2.05e7iT2 |
| 31 | 1+2.37e3T+2.86e7T2 |
| 37 | 1+(1.94e3+1.94e3i)T+6.93e7iT2 |
| 41 | 1−3.91e3iT−1.15e8T2 |
| 43 | 1+(8.82e3+8.82e3i)T+1.47e8iT2 |
| 47 | 1−2.32e4T+2.29e8T2 |
| 53 | 1+(−7.57e3−7.57e3i)T+4.18e8iT2 |
| 59 | 1+(3.30e4+3.30e4i)T+7.14e8iT2 |
| 61 | 1+(2.65e4−2.65e4i)T−8.44e8iT2 |
| 67 | 1+(−1.62e4+1.62e4i)T−1.35e9iT2 |
| 71 | 1−3.36e4iT−1.80e9T2 |
| 73 | 1+5.62e4iT−2.07e9T2 |
| 79 | 1−1.29e3T+3.07e9T2 |
| 83 | 1+(−7.87e4+7.87e4i)T−3.93e9iT2 |
| 89 | 1−8.69e4iT−5.58e9T2 |
| 97 | 1+8.39e3T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.17372333654813981943403970284, −17.24953405083272979785323212165, −15.13610460839243207197984041274, −13.96680686787847730723653240590, −13.51969117677511667442166438823, −10.56937935045767034382067538782, −9.099721454339143765453168463615, −7.41805753849027211773815548850, −6.44121087447635631979554002876, −2.11562578316265800102810159623,
2.37083630931323561727197754596, 4.69951836598634660717162508635, 8.630642809896823925426925905941, 9.231705832244961714987618988788, 10.39214730947159230854465824278, 12.60974939448344019752422483101, 13.76024669780051736972001380645, 15.52310235200364162020144960951, 16.83934378257137916947476103435, 18.04183857077556338942310878652