L(s) = 1 | − 13.8i·3-s + 18·5-s + 27.7i·7-s − 110.·9-s + 124. i·11-s + 178·13-s − 249. i·15-s − 126·17-s − 401. i·19-s + 383.·21-s + 748. i·23-s − 301·25-s + 415. i·27-s − 1.42e3·29-s − 332. i·31-s + ⋯ |
L(s) = 1 | − 1.53i·3-s + 0.719·5-s + 0.565i·7-s − 1.37·9-s + 1.03i·11-s + 1.05·13-s − 1.10i·15-s − 0.435·17-s − 1.11i·19-s + 0.870·21-s + 1.41i·23-s − 0.481·25-s + 0.570i·27-s − 1.69·29-s − 0.346i·31-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.5+0.866i)Λ(5−s)
Λ(s)=(=(16s/2ΓC(s+2)L(s)(0.5+0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.5+0.866i
|
Analytic conductor: |
1.65391 |
Root analytic conductor: |
1.28604 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :2), 0.5+0.866i)
|
Particular Values
L(25) |
≈ |
1.09266−0.630851i |
L(21) |
≈ |
1.09266−0.630851i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+13.8iT−81T2 |
| 5 | 1−18T+625T2 |
| 7 | 1−27.7iT−2.40e3T2 |
| 11 | 1−124.iT−1.46e4T2 |
| 13 | 1−178T+2.85e4T2 |
| 17 | 1+126T+8.35e4T2 |
| 19 | 1+401.iT−1.30e5T2 |
| 23 | 1−748.iT−2.79e5T2 |
| 29 | 1+1.42e3T+7.07e5T2 |
| 31 | 1+332.iT−9.23e5T2 |
| 37 | 1−530T+1.87e6T2 |
| 41 | 1−162T+2.82e6T2 |
| 43 | 1+1.53e3iT−3.41e6T2 |
| 47 | 1−3.49e3iT−4.87e6T2 |
| 53 | 1−594T+7.89e6T2 |
| 59 | 1+2.36e3iT−1.21e7T2 |
| 61 | 1−626T+1.38e7T2 |
| 67 | 1−1.09e3iT−2.01e7T2 |
| 71 | 1+7.73e3iT−2.54e7T2 |
| 73 | 1+6.68e3T+2.83e7T2 |
| 79 | 1−1.38e3iT−3.89e7T2 |
| 83 | 1+4.61e3iT−4.74e7T2 |
| 89 | 1−8.22e3T+6.27e7T2 |
| 97 | 1+1.59e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.06836023437643585814049186767, −17.44936760526088162295216829859, −15.36696591063106557177972043046, −13.64759522673011492851164922547, −12.89920524090815261321697102276, −11.46607753553729154749631859307, −9.217531861594741111994238977521, −7.41165828246141512397470417158, −5.94309129791928061554367690148, −1.92229369019212028723216941492,
3.86456321740832332010452948237, 5.83299655036539627994944390209, 8.715598346365770058092297180882, 10.12250259294611252202556742692, 11.08207130663272797544744924450, 13.46465136652306531144306691342, 14.67508805471552722410182275946, 16.15714647425047230237525206001, 16.84154656385198925609835861715, 18.49403857721936048837836211054