L(s) = 1 | − 13.8i·3-s + 18·5-s + 27.7i·7-s − 110.·9-s + 124. i·11-s + 178·13-s − 249. i·15-s − 126·17-s − 401. i·19-s + 383.·21-s + 748. i·23-s − 301·25-s + 415. i·27-s − 1.42e3·29-s − 332. i·31-s + ⋯ |
L(s) = 1 | − 1.53i·3-s + 0.719·5-s + 0.565i·7-s − 1.37·9-s + 1.03i·11-s + 1.05·13-s − 1.10i·15-s − 0.435·17-s − 1.11i·19-s + 0.870·21-s + 1.41i·23-s − 0.481·25-s + 0.570i·27-s − 1.69·29-s − 0.346i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.09266 - 0.630851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09266 - 0.630851i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + 13.8iT - 81T^{2} \) |
| 5 | \( 1 - 18T + 625T^{2} \) |
| 7 | \( 1 - 27.7iT - 2.40e3T^{2} \) |
| 11 | \( 1 - 124. iT - 1.46e4T^{2} \) |
| 13 | \( 1 - 178T + 2.85e4T^{2} \) |
| 17 | \( 1 + 126T + 8.35e4T^{2} \) |
| 19 | \( 1 + 401. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 748. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + 1.42e3T + 7.07e5T^{2} \) |
| 31 | \( 1 + 332. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 530T + 1.87e6T^{2} \) |
| 41 | \( 1 - 162T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.53e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 3.49e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 594T + 7.89e6T^{2} \) |
| 59 | \( 1 + 2.36e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 626T + 1.38e7T^{2} \) |
| 67 | \( 1 - 1.09e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 + 7.73e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 6.68e3T + 2.83e7T^{2} \) |
| 79 | \( 1 - 1.38e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 4.61e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 8.22e3T + 6.27e7T^{2} \) |
| 97 | \( 1 + 1.59e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.06836023437643585814049186767, −17.44936760526088162295216829859, −15.36696591063106557177972043046, −13.64759522673011492851164922547, −12.89920524090815261321697102276, −11.46607753553729154749631859307, −9.217531861594741111994238977521, −7.41165828246141512397470417158, −5.94309129791928061554367690148, −1.92229369019212028723216941492,
3.86456321740832332010452948237, 5.83299655036539627994944390209, 8.715598346365770058092297180882, 10.12250259294611252202556742692, 11.08207130663272797544744924450, 13.46465136652306531144306691342, 14.67508805471552722410182275946, 16.15714647425047230237525206001, 16.84154656385198925609835861715, 18.49403857721936048837836211054