Properties

Label 2-2e6-64.21-c1-0-3
Degree $2$
Conductor $64$
Sign $0.954 + 0.297i$
Analytic cond. $0.511042$
Root an. cond. $0.714872$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0941 − 1.41i)2-s + (0.553 + 2.78i)3-s + (−1.98 − 0.265i)4-s + (2.59 − 1.73i)5-s + (3.98 − 0.519i)6-s + (−1.96 − 0.813i)7-s + (−0.561 + 2.77i)8-s + (−4.67 + 1.93i)9-s + (−2.20 − 3.82i)10-s + (−2.02 − 0.402i)11-s + (−0.358 − 5.66i)12-s + (−1.99 − 1.33i)13-s + (−1.33 + 2.69i)14-s + (6.27 + 6.27i)15-s + (3.85 + 1.05i)16-s + (−2.31 + 2.31i)17-s + ⋯
L(s)  = 1  + (0.0665 − 0.997i)2-s + (0.319 + 1.60i)3-s + (−0.991 − 0.132i)4-s + (1.16 − 0.776i)5-s + (1.62 − 0.212i)6-s + (−0.742 − 0.307i)7-s + (−0.198 + 0.980i)8-s + (−1.55 + 0.645i)9-s + (−0.697 − 1.21i)10-s + (−0.610 − 0.121i)11-s + (−0.103 − 1.63i)12-s + (−0.553 − 0.369i)13-s + (−0.356 + 0.720i)14-s + (1.61 + 1.61i)15-s + (0.964 + 0.263i)16-s + (−0.560 + 0.560i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 + 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 + 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $0.954 + 0.297i$
Analytic conductor: \(0.511042\)
Root analytic conductor: \(0.714872\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{64} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 64,\ (\ :1/2),\ 0.954 + 0.297i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.951325 - 0.144546i\)
\(L(\frac12)\) \(\approx\) \(0.951325 - 0.144546i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0941 + 1.41i)T \)
good3 \( 1 + (-0.553 - 2.78i)T + (-2.77 + 1.14i)T^{2} \)
5 \( 1 + (-2.59 + 1.73i)T + (1.91 - 4.61i)T^{2} \)
7 \( 1 + (1.96 + 0.813i)T + (4.94 + 4.94i)T^{2} \)
11 \( 1 + (2.02 + 0.402i)T + (10.1 + 4.20i)T^{2} \)
13 \( 1 + (1.99 + 1.33i)T + (4.97 + 12.0i)T^{2} \)
17 \( 1 + (2.31 - 2.31i)T - 17iT^{2} \)
19 \( 1 + (-2.37 + 3.55i)T + (-7.27 - 17.5i)T^{2} \)
23 \( 1 + (-0.993 - 2.39i)T + (-16.2 + 16.2i)T^{2} \)
29 \( 1 + (-2.34 + 0.465i)T + (26.7 - 11.0i)T^{2} \)
31 \( 1 + 1.81iT - 31T^{2} \)
37 \( 1 + (-1.40 - 2.10i)T + (-14.1 + 34.1i)T^{2} \)
41 \( 1 + (-4.66 - 11.2i)T + (-28.9 + 28.9i)T^{2} \)
43 \( 1 + (-0.452 + 2.27i)T + (-39.7 - 16.4i)T^{2} \)
47 \( 1 + (2.27 - 2.27i)T - 47iT^{2} \)
53 \( 1 + (-7.98 - 1.58i)T + (48.9 + 20.2i)T^{2} \)
59 \( 1 + (-7.08 + 4.73i)T + (22.5 - 54.5i)T^{2} \)
61 \( 1 + (1.95 + 9.85i)T + (-56.3 + 23.3i)T^{2} \)
67 \( 1 + (-2.88 - 14.5i)T + (-61.8 + 25.6i)T^{2} \)
71 \( 1 + (6.41 + 2.65i)T + (50.2 + 50.2i)T^{2} \)
73 \( 1 + (3.36 - 1.39i)T + (51.6 - 51.6i)T^{2} \)
79 \( 1 + (10.9 + 10.9i)T + 79iT^{2} \)
83 \( 1 + (3.72 - 5.57i)T + (-31.7 - 76.6i)T^{2} \)
89 \( 1 + (3.10 - 7.49i)T + (-62.9 - 62.9i)T^{2} \)
97 \( 1 + 8.49iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.79886162525923138894765335671, −13.53971613852723341281661616561, −12.91929831775246550358997496025, −11.16759978161865329308588879032, −9.967717407978693742908690669469, −9.681518259524564250974186935109, −8.603247218781860017442237726478, −5.55077250165240194182667676575, −4.52415553177435576722209162203, −2.90474528779099946316428149210, 2.59264926806811437568136031799, 5.70057207086243110619646391566, 6.66365608258751947233422052008, 7.42495361795732645034861384350, 8.906434637043632169608884140958, 10.09557910869076510150527529324, 12.25090744530604549286861613645, 13.15131612864655675998333299191, 13.90011371359959569541237765587, 14.60567015988161751695059086265

Graph of the $Z$-function along the critical line