L(s) = 1 | + (−1.29 − 0.567i)2-s + (−1.12 + 0.602i)3-s + (1.35 + 1.47i)4-s + (−1.29 − 1.58i)5-s + (1.80 − 0.140i)6-s + (−1.93 + 1.29i)7-s + (−0.922 − 2.67i)8-s + (−0.758 + 1.13i)9-s + (0.784 + 2.78i)10-s + (−4.58 + 1.39i)11-s + (−2.41 − 0.840i)12-s + (−1.77 − 1.45i)13-s + (3.24 − 0.577i)14-s + (2.41 + 1.00i)15-s + (−0.322 + 3.98i)16-s + (−0.698 + 0.289i)17-s + ⋯ |
L(s) = 1 | + (−0.915 − 0.401i)2-s + (−0.651 + 0.348i)3-s + (0.677 + 0.735i)4-s + (−0.580 − 0.707i)5-s + (0.736 − 0.0575i)6-s + (−0.732 + 0.489i)7-s + (−0.326 − 0.945i)8-s + (−0.252 + 0.378i)9-s + (0.248 + 0.881i)10-s + (−1.38 + 0.419i)11-s + (−0.697 − 0.242i)12-s + (−0.491 − 0.403i)13-s + (0.867 − 0.154i)14-s + (0.624 + 0.258i)15-s + (−0.0806 + 0.996i)16-s + (−0.169 + 0.0701i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(−0.884−0.466i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(−0.884−0.466i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
−0.884−0.466i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), −0.884−0.466i)
|
Particular Values
L(1) |
≈ |
0.0200761+0.0811680i |
L(21) |
≈ |
0.0200761+0.0811680i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.29+0.567i)T |
good | 3 | 1+(1.12−0.602i)T+(1.66−2.49i)T2 |
| 5 | 1+(1.29+1.58i)T+(−0.975+4.90i)T2 |
| 7 | 1+(1.93−1.29i)T+(2.67−6.46i)T2 |
| 11 | 1+(4.58−1.39i)T+(9.14−6.11i)T2 |
| 13 | 1+(1.77+1.45i)T+(2.53+12.7i)T2 |
| 17 | 1+(0.698−0.289i)T+(12.0−12.0i)T2 |
| 19 | 1+(−0.355−3.60i)T+(−18.6+3.70i)T2 |
| 23 | 1+(0.824−0.164i)T+(21.2−8.80i)T2 |
| 29 | 1+(−2.64+8.70i)T+(−24.1−16.1i)T2 |
| 31 | 1+(−4.31−4.31i)T+31iT2 |
| 37 | 1+(3.24+0.319i)T+(36.2+7.21i)T2 |
| 41 | 1+(−2.34−11.7i)T+(−37.8+15.6i)T2 |
| 43 | 1+(7.17+3.83i)T+(23.8+35.7i)T2 |
| 47 | 1+(1.13+2.74i)T+(−33.2+33.2i)T2 |
| 53 | 1+(−2.85−9.39i)T+(−44.0+29.4i)T2 |
| 59 | 1+(3.31−2.71i)T+(11.5−57.8i)T2 |
| 61 | 1+(−0.0672−0.125i)T+(−33.8+50.7i)T2 |
| 67 | 1+(−3.12−5.84i)T+(−37.2+55.7i)T2 |
| 71 | 1+(6.30+9.44i)T+(−27.1+65.5i)T2 |
| 73 | 1+(4.87+3.25i)T+(27.9+67.4i)T2 |
| 79 | 1+(−4.87+11.7i)T+(−55.8−55.8i)T2 |
| 83 | 1+(13.3−1.31i)T+(81.4−16.1i)T2 |
| 89 | 1+(13.5+2.69i)T+(82.2+34.0i)T2 |
| 97 | 1+(−4.07−4.07i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.32335744074211760729144068043, −12.34840697983622234347436161768, −11.77842449631118821893728096149, −10.44190651148850590557739739689, −9.905348477908002946422277846618, −8.446749484721161513316955314748, −7.73834141239905790759388175941, −6.05117439073838575695675335182, −4.66578565724831013840941935545, −2.73116661081429475937941782681,
0.11664435912694360078336561450, 2.99566202736871662362920409262, 5.35519824839387940282491633753, 6.71183726849112582942047611756, 7.22076497679749874145794937309, 8.551522509600294001528306219581, 9.887065048400168638026721800232, 10.83943378153729385419970107557, 11.52844298484460107699807529436, 12.76343307490831403000124251007