L(s) = 1 | + (−0.567 + 2.77i)2-s + (−5.84 + 3.12i)3-s + (−7.35 − 3.14i)4-s + (0.807 + 0.983i)5-s + (−5.33 − 17.9i)6-s + (−28.4 + 18.9i)7-s + (12.8 − 18.5i)8-s + (9.36 − 14.0i)9-s + (−3.18 + 1.67i)10-s + (45.4 − 13.7i)11-s + (52.7 − 4.59i)12-s + (−48.6 − 39.9i)13-s + (−36.5 − 89.5i)14-s + (−7.78 − 3.22i)15-s + (44.2 + 46.2i)16-s + (64.3 − 26.6i)17-s + ⋯ |
L(s) = 1 | + (−0.200 + 0.979i)2-s + (−1.12 + 0.600i)3-s + (−0.919 − 0.393i)4-s + (0.0722 + 0.0879i)5-s + (−0.363 − 1.22i)6-s + (−1.53 + 1.02i)7-s + (0.569 − 0.821i)8-s + (0.346 − 0.519i)9-s + (−0.100 + 0.0530i)10-s + (1.24 − 0.377i)11-s + (1.26 − 0.110i)12-s + (−1.03 − 0.851i)13-s + (−0.697 − 1.70i)14-s + (−0.134 − 0.0555i)15-s + (0.690 + 0.722i)16-s + (0.918 − 0.380i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.836+0.547i)Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)(0.836+0.547i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.836+0.547i
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), 0.836+0.547i)
|
Particular Values
L(2) |
≈ |
0.183061−0.0545711i |
L(21) |
≈ |
0.183061−0.0545711i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.567−2.77i)T |
good | 3 | 1+(5.84−3.12i)T+(15.0−22.4i)T2 |
| 5 | 1+(−0.807−0.983i)T+(−24.3+122.i)T2 |
| 7 | 1+(28.4−18.9i)T+(131.−316.i)T2 |
| 11 | 1+(−45.4+13.7i)T+(1.10e3−739.i)T2 |
| 13 | 1+(48.6+39.9i)T+(428.+2.15e3i)T2 |
| 17 | 1+(−64.3+26.6i)T+(3.47e3−3.47e3i)T2 |
| 19 | 1+(−13.3−135.i)T+(−6.72e3+1.33e3i)T2 |
| 23 | 1+(−19.8+3.95i)T+(1.12e4−4.65e3i)T2 |
| 29 | 1+(24.6−81.2i)T+(−2.02e4−1.35e4i)T2 |
| 31 | 1+(73.2+73.2i)T+2.97e4iT2 |
| 37 | 1+(127.+12.5i)T+(4.96e4+9.88e3i)T2 |
| 41 | 1+(73.2+368.i)T+(−6.36e4+2.63e4i)T2 |
| 43 | 1+(386.+206.i)T+(4.41e4+6.61e4i)T2 |
| 47 | 1+(140.+339.i)T+(−7.34e4+7.34e4i)T2 |
| 53 | 1+(−128.−422.i)T+(−1.23e5+8.27e4i)T2 |
| 59 | 1+(16.9−13.8i)T+(4.00e4−2.01e5i)T2 |
| 61 | 1+(136.+254.i)T+(−1.26e5+1.88e5i)T2 |
| 67 | 1+(−349.−653.i)T+(−1.67e5+2.50e5i)T2 |
| 71 | 1+(−32.1−48.1i)T+(−1.36e5+3.30e5i)T2 |
| 73 | 1+(−148.−99.4i)T+(1.48e5+3.59e5i)T2 |
| 79 | 1+(−66.9+161.i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(1.25e3−123.i)T+(5.60e5−1.11e5i)T2 |
| 89 | 1+(−350.−69.6i)T+(6.51e5+2.69e5i)T2 |
| 97 | 1+(533.+533.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50332782693348291740658855950, −12.02875770340753940001794913095, −10.19854166498352157837674640689, −9.808169510538486976792535029446, −8.604929686209321517138791510200, −6.95687163291693886673944892434, −5.90630843762402536086549330395, −5.38965324612109579143774519075, −3.60273599454953878518291125856, −0.14086606704817761026365495829,
1.20608771388166274230706738817, 3.38635050004815061722647802273, 4.81365165497114795843595671544, 6.53625467421804256672926993397, 7.22009803593463518535105325616, 9.312922814919499038936106398627, 9.842219820041002527710786171089, 11.13647366863753964387009425648, 11.90839111586209618415923627155, 12.74205838500324976595662626040