L(s) = 1 | + (2.35 + 1.56i)2-s + (−0.400 + 0.213i)3-s + (3.10 + 7.37i)4-s + (4.33 + 5.27i)5-s + (−1.27 − 0.121i)6-s + (20.4 − 13.6i)7-s + (−4.20 + 22.2i)8-s + (−14.8 + 22.2i)9-s + (1.95 + 19.2i)10-s + (7.02 − 2.13i)11-s + (−2.82 − 2.28i)12-s + (0.932 + 0.765i)13-s + (69.4 − 0.220i)14-s + (−2.86 − 1.18i)15-s + (−44.6 + 45.8i)16-s + (−17.4 + 7.21i)17-s + ⋯ |
L(s) = 1 | + (0.833 + 0.552i)2-s + (−0.0770 + 0.0411i)3-s + (0.388 + 0.921i)4-s + (0.387 + 0.472i)5-s + (−0.0869 − 0.00828i)6-s + (1.10 − 0.736i)7-s + (−0.185 + 0.982i)8-s + (−0.551 + 0.825i)9-s + (0.0617 + 0.607i)10-s + (0.192 − 0.0583i)11-s + (−0.0678 − 0.0549i)12-s + (0.0198 + 0.0163i)13-s + (1.32 − 0.00421i)14-s + (−0.0492 − 0.0204i)15-s + (−0.698 + 0.716i)16-s + (−0.248 + 0.103i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.124−0.992i)Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)(0.124−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.124−0.992i
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), 0.124−0.992i)
|
Particular Values
L(2) |
≈ |
2.09170+1.84532i |
L(21) |
≈ |
2.09170+1.84532i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.35−1.56i)T |
good | 3 | 1+(0.400−0.213i)T+(15.0−22.4i)T2 |
| 5 | 1+(−4.33−5.27i)T+(−24.3+122.i)T2 |
| 7 | 1+(−20.4+13.6i)T+(131.−316.i)T2 |
| 11 | 1+(−7.02+2.13i)T+(1.10e3−739.i)T2 |
| 13 | 1+(−0.932−0.765i)T+(428.+2.15e3i)T2 |
| 17 | 1+(17.4−7.21i)T+(3.47e3−3.47e3i)T2 |
| 19 | 1+(−10.2−103.i)T+(−6.72e3+1.33e3i)T2 |
| 23 | 1+(−23.9+4.76i)T+(1.12e4−4.65e3i)T2 |
| 29 | 1+(−83.8+276.i)T+(−2.02e4−1.35e4i)T2 |
| 31 | 1+(−12.7−12.7i)T+2.97e4iT2 |
| 37 | 1+(−54.8−5.40i)T+(4.96e4+9.88e3i)T2 |
| 41 | 1+(82.2+413.i)T+(−6.36e4+2.63e4i)T2 |
| 43 | 1+(−23.2−12.4i)T+(4.41e4+6.61e4i)T2 |
| 47 | 1+(137.+331.i)T+(−7.34e4+7.34e4i)T2 |
| 53 | 1+(−108.−358.i)T+(−1.23e5+8.27e4i)T2 |
| 59 | 1+(−421.+345.i)T+(4.00e4−2.01e5i)T2 |
| 61 | 1+(201.+376.i)T+(−1.26e5+1.88e5i)T2 |
| 67 | 1+(157.+295.i)T+(−1.67e5+2.50e5i)T2 |
| 71 | 1+(−275.−412.i)T+(−1.36e5+3.30e5i)T2 |
| 73 | 1+(−32.5−21.7i)T+(1.48e5+3.59e5i)T2 |
| 79 | 1+(146.−353.i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(−894.+88.0i)T+(5.60e5−1.11e5i)T2 |
| 89 | 1+(1.06e3+211.i)T+(6.51e5+2.69e5i)T2 |
| 97 | 1+(16.0+16.0i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.56474591820841784068217869111, −12.09994564331443843171065193731, −11.17657409558357846525647524807, −10.30710594845612098509497058491, −8.382892211177131819864187593264, −7.65313279547126354846766876614, −6.34767495749388321145250930306, −5.20223049448466535548743169040, −4.01898231629231877090086691216, −2.23514827123164350155072920444,
1.32122017426703788322939835409, 2.91319100730070213813455960977, 4.70965709274382309483053398069, 5.53063319844657791439719592155, 6.79974193832863545619017161772, 8.667264324784947403059522524982, 9.460017200996961145390777261054, 11.02421891438437214605278674212, 11.65388038299567089673591936272, 12.57410947197526205078629839761