L(s) = 1 | + (−0.130 − 2.82i)2-s + (−5.68 + 3.04i)3-s + (−7.96 + 0.735i)4-s + (4.50 + 5.49i)5-s + (9.32 + 15.6i)6-s + (19.5 − 13.0i)7-s + (3.11 + 22.4i)8-s + (8.10 − 12.1i)9-s + (14.9 − 13.4i)10-s + (6.71 − 2.03i)11-s + (43.0 − 28.4i)12-s + (−65.6 − 53.8i)13-s + (−39.3 − 53.4i)14-s + (−42.3 − 17.5i)15-s + (62.9 − 11.7i)16-s + (−7.92 + 3.28i)17-s + ⋯ |
L(s) = 1 | + (−0.0460 − 0.998i)2-s + (−1.09 + 0.585i)3-s + (−0.995 + 0.0919i)4-s + (0.403 + 0.491i)5-s + (0.634 + 1.06i)6-s + (1.05 − 0.704i)7-s + (0.137 + 0.990i)8-s + (0.300 − 0.449i)9-s + (0.472 − 0.425i)10-s + (0.184 − 0.0558i)11-s + (1.03 − 0.683i)12-s + (−1.40 − 1.14i)13-s + (−0.751 − 1.02i)14-s + (−0.728 − 0.301i)15-s + (0.983 − 0.183i)16-s + (−0.113 + 0.0468i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(−0.402+0.915i)Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)(−0.402+0.915i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
−0.402+0.915i
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), −0.402+0.915i)
|
Particular Values
L(2) |
≈ |
0.493265−0.755634i |
L(21) |
≈ |
0.493265−0.755634i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.130+2.82i)T |
good | 3 | 1+(5.68−3.04i)T+(15.0−22.4i)T2 |
| 5 | 1+(−4.50−5.49i)T+(−24.3+122.i)T2 |
| 7 | 1+(−19.5+13.0i)T+(131.−316.i)T2 |
| 11 | 1+(−6.71+2.03i)T+(1.10e3−739.i)T2 |
| 13 | 1+(65.6+53.8i)T+(428.+2.15e3i)T2 |
| 17 | 1+(7.92−3.28i)T+(3.47e3−3.47e3i)T2 |
| 19 | 1+(14.1+143.i)T+(−6.72e3+1.33e3i)T2 |
| 23 | 1+(−167.+33.2i)T+(1.12e4−4.65e3i)T2 |
| 29 | 1+(−11.5+38.1i)T+(−2.02e4−1.35e4i)T2 |
| 31 | 1+(−218.−218.i)T+2.97e4iT2 |
| 37 | 1+(116.+11.4i)T+(4.96e4+9.88e3i)T2 |
| 41 | 1+(29.9+150.i)T+(−6.36e4+2.63e4i)T2 |
| 43 | 1+(162.+87.0i)T+(4.41e4+6.61e4i)T2 |
| 47 | 1+(108.+261.i)T+(−7.34e4+7.34e4i)T2 |
| 53 | 1+(−31.3−103.i)T+(−1.23e5+8.27e4i)T2 |
| 59 | 1+(−317.+260.i)T+(4.00e4−2.01e5i)T2 |
| 61 | 1+(−30.9−57.8i)T+(−1.26e5+1.88e5i)T2 |
| 67 | 1+(−364.−681.i)T+(−1.67e5+2.50e5i)T2 |
| 71 | 1+(607.+908.i)T+(−1.36e5+3.30e5i)T2 |
| 73 | 1+(82.2+54.9i)T+(1.48e5+3.59e5i)T2 |
| 79 | 1+(331.−800.i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(218.−21.5i)T+(5.60e5−1.11e5i)T2 |
| 89 | 1+(−486.−96.8i)T+(6.51e5+2.69e5i)T2 |
| 97 | 1+(209.+209.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.20335510804787863652943327328, −11.25776093140727976236385905916, −10.59447119674927495713736920444, −10.03047743018091294623641641948, −8.522338087286810531526597604367, −7.00469061207825127029308109585, −5.14451435432591272683941152680, −4.68744601416147563157888919026, −2.70548939856089165243913677414, −0.59665839960304718608044378793,
1.46181622408381153603136618539, 4.71004607571689383618695633503, 5.44032189814419927475013671832, 6.49705439582249615854736444593, 7.59233105653698472178379869874, 8.801553478629059663759766155670, 9.823717643254167182074195025583, 11.48284711121774353606538005387, 12.18880513770987105176571849156, 13.12660014886738142133438700124