L(s) = 1 | + (−2.42 − 1.46i)2-s + (7.50 − 4.01i)3-s + (3.71 + 7.08i)4-s + (0.941 + 1.14i)5-s + (−24.0 − 1.27i)6-s + (2.81 − 1.88i)7-s + (1.37 − 22.5i)8-s + (25.2 − 37.7i)9-s + (−0.599 − 4.15i)10-s + (28.5 − 8.66i)11-s + (56.3 + 38.2i)12-s + (−2.68 − 2.20i)13-s + (−9.56 + 0.432i)14-s + (11.6 + 4.83i)15-s + (−36.3 + 52.6i)16-s + (62.9 − 26.0i)17-s + ⋯ |
L(s) = 1 | + (−0.855 − 0.517i)2-s + (1.44 − 0.771i)3-s + (0.464 + 0.885i)4-s + (0.0842 + 0.102i)5-s + (−1.63 − 0.0867i)6-s + (0.151 − 0.101i)7-s + (0.0607 − 0.998i)8-s + (0.934 − 1.39i)9-s + (−0.0189 − 0.131i)10-s + (0.782 − 0.237i)11-s + (1.35 + 0.920i)12-s + (−0.0573 − 0.0470i)13-s + (−0.182 + 0.00825i)14-s + (0.200 + 0.0831i)15-s + (−0.568 + 0.822i)16-s + (0.898 − 0.372i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.168+0.985i)Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)(0.168+0.985i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.168+0.985i
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), 0.168+0.985i)
|
Particular Values
L(2) |
≈ |
1.41621−1.19502i |
L(21) |
≈ |
1.41621−1.19502i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.42+1.46i)T |
good | 3 | 1+(−7.50+4.01i)T+(15.0−22.4i)T2 |
| 5 | 1+(−0.941−1.14i)T+(−24.3+122.i)T2 |
| 7 | 1+(−2.81+1.88i)T+(131.−316.i)T2 |
| 11 | 1+(−28.5+8.66i)T+(1.10e3−739.i)T2 |
| 13 | 1+(2.68+2.20i)T+(428.+2.15e3i)T2 |
| 17 | 1+(−62.9+26.0i)T+(3.47e3−3.47e3i)T2 |
| 19 | 1+(−1.70−17.3i)T+(−6.72e3+1.33e3i)T2 |
| 23 | 1+(83.5−16.6i)T+(1.12e4−4.65e3i)T2 |
| 29 | 1+(−38.0+125.i)T+(−2.02e4−1.35e4i)T2 |
| 31 | 1+(−29.8−29.8i)T+2.97e4iT2 |
| 37 | 1+(301.+29.6i)T+(4.96e4+9.88e3i)T2 |
| 41 | 1+(−45.5−228.i)T+(−6.36e4+2.63e4i)T2 |
| 43 | 1+(328.+175.i)T+(4.41e4+6.61e4i)T2 |
| 47 | 1+(−114.−277.i)T+(−7.34e4+7.34e4i)T2 |
| 53 | 1+(−147.−484.i)T+(−1.23e5+8.27e4i)T2 |
| 59 | 1+(−219.+180.i)T+(4.00e4−2.01e5i)T2 |
| 61 | 1+(−261.−488.i)T+(−1.26e5+1.88e5i)T2 |
| 67 | 1+(166.+312.i)T+(−1.67e5+2.50e5i)T2 |
| 71 | 1+(158.+237.i)T+(−1.36e5+3.30e5i)T2 |
| 73 | 1+(−767.−513.i)T+(1.48e5+3.59e5i)T2 |
| 79 | 1+(438.−1.05e3i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(−833.+82.0i)T+(5.60e5−1.11e5i)T2 |
| 89 | 1+(−819.−163.i)T+(6.51e5+2.69e5i)T2 |
| 97 | 1+(1.29e3+1.29e3i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50874975015314414997281477128, −11.77787858036060194724662074601, −10.25391616016619138858669402028, −9.325102550816599188418121646220, −8.369536631933761425734694407422, −7.65188248814715372783493878206, −6.53527937318868760678953992738, −3.79522361822244153077840366705, −2.60606401842715177502735148109, −1.26617864794557674374754198849,
1.84043819493280665407115236743, 3.55327102369216168044272060062, 5.17579060069284398422414386283, 6.89590820389966844574737907766, 8.107689277872858440915517348496, 8.842115996376247822631050631563, 9.690986839258311344564445133481, 10.45921467937348297369232424235, 11.90422216001183887157486385100, 13.55769592909778495108476766335