L(s) = 1 | + (0.603 − 1.27i)2-s + (1.98 + 1.06i)3-s + (−1.27 − 1.54i)4-s + (−0.212 + 0.259i)5-s + (2.55 − 1.89i)6-s + (−0.792 − 0.529i)7-s + (−2.74 + 0.694i)8-s + (1.14 + 1.71i)9-s + (0.203 + 0.428i)10-s + (2.34 + 0.709i)11-s + (−0.886 − 4.41i)12-s + (−2.81 + 2.30i)13-s + (−1.15 + 0.693i)14-s + (−0.696 + 0.288i)15-s + (−0.766 + 3.92i)16-s + (−1.82 − 0.756i)17-s + ⋯ |
L(s) = 1 | + (0.426 − 0.904i)2-s + (1.14 + 0.612i)3-s + (−0.635 − 0.771i)4-s + (−0.0950 + 0.115i)5-s + (1.04 − 0.775i)6-s + (−0.299 − 0.200i)7-s + (−0.969 + 0.245i)8-s + (0.382 + 0.573i)9-s + (0.0641 + 0.135i)10-s + (0.705 + 0.214i)11-s + (−0.255 − 1.27i)12-s + (−0.779 + 0.640i)13-s + (−0.308 + 0.185i)14-s + (−0.179 + 0.0745i)15-s + (−0.191 + 0.981i)16-s + (−0.442 − 0.183i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.711+0.702i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.711+0.702i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), 0.711+0.702i)
|
Particular Values
L(1) |
≈ |
1.45536−0.597542i |
L(21) |
≈ |
1.45536−0.597542i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.603+1.27i)T |
good | 3 | 1+(−1.98−1.06i)T+(1.66+2.49i)T2 |
| 5 | 1+(0.212−0.259i)T+(−0.975−4.90i)T2 |
| 7 | 1+(0.792+0.529i)T+(2.67+6.46i)T2 |
| 11 | 1+(−2.34−0.709i)T+(9.14+6.11i)T2 |
| 13 | 1+(2.81−2.30i)T+(2.53−12.7i)T2 |
| 17 | 1+(1.82+0.756i)T+(12.0+12.0i)T2 |
| 19 | 1+(−0.157+1.60i)T+(−18.6−3.70i)T2 |
| 23 | 1+(7.27+1.44i)T+(21.2+8.80i)T2 |
| 29 | 1+(−1.10−3.64i)T+(−24.1+16.1i)T2 |
| 31 | 1+(−7.16+7.16i)T−31iT2 |
| 37 | 1+(−0.968+0.0953i)T+(36.2−7.21i)T2 |
| 41 | 1+(2.34−11.8i)T+(−37.8−15.6i)T2 |
| 43 | 1+(−7.65+4.09i)T+(23.8−35.7i)T2 |
| 47 | 1+(1.74−4.20i)T+(−33.2−33.2i)T2 |
| 53 | 1+(−2.50+8.26i)T+(−44.0−29.4i)T2 |
| 59 | 1+(2.07+1.69i)T+(11.5+57.8i)T2 |
| 61 | 1+(−3.63+6.80i)T+(−33.8−50.7i)T2 |
| 67 | 1+(−5.45+10.1i)T+(−37.2−55.7i)T2 |
| 71 | 1+(−1.79+2.68i)T+(−27.1−65.5i)T2 |
| 73 | 1+(−2.04+1.36i)T+(27.9−67.4i)T2 |
| 79 | 1+(−4.58−11.0i)T+(−55.8+55.8i)T2 |
| 83 | 1+(7.11+0.700i)T+(81.4+16.1i)T2 |
| 89 | 1+(13.6−2.71i)T+(82.2−34.0i)T2 |
| 97 | 1+(10.5−10.5i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.38060326874019966843054473905, −12.17164575850935274967859368703, −11.22479497095736126491332701514, −9.775346433633423514124290137508, −9.499817961896115880718057333951, −8.247556907801319429593014282121, −6.53154013924849264406527978204, −4.63377673567862642252277302680, −3.68576079423547044827991203592, −2.37054950194748650624241150838,
2.73245226033875988404517243887, 4.16468891146697493318092592732, 5.87984096326876587963749272519, 7.06895096284082919626259469921, 8.098027034895520802424645522991, 8.768277508092425281253949398167, 9.976818165117118138070720093264, 12.04323457346639423123344997273, 12.65812819817824719794984719292, 13.89429350761274487378094730068