L(s) = 1 | + (−0.0717 + 1.41i)2-s + (−1.31 + 0.129i)3-s + (−1.98 − 0.202i)4-s + (−1.48 + 2.78i)5-s + (−0.0886 − 1.87i)6-s + (0.373 − 1.87i)7-s + (0.429 − 2.79i)8-s + (−1.22 + 0.243i)9-s + (−3.82 − 2.30i)10-s + (−2.23 + 1.83i)11-s + (2.64 + 0.00899i)12-s + (−2.26 + 1.21i)13-s + (2.62 + 0.662i)14-s + (1.59 − 3.86i)15-s + (3.91 + 0.806i)16-s + (2.75 + 6.64i)17-s + ⋯ |
L(s) = 1 | + (−0.0507 + 0.998i)2-s + (−0.760 + 0.0749i)3-s + (−0.994 − 0.101i)4-s + (−0.665 + 1.24i)5-s + (−0.0362 − 0.763i)6-s + (0.141 − 0.710i)7-s + (0.151 − 0.988i)8-s + (−0.407 + 0.0810i)9-s + (−1.20 − 0.727i)10-s + (−0.673 + 0.552i)11-s + (0.764 + 0.00259i)12-s + (−0.628 + 0.335i)13-s + (0.702 + 0.177i)14-s + (0.413 − 0.997i)15-s + (0.979 + 0.201i)16-s + (0.667 + 1.61i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(−0.996+0.0861i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(−0.996+0.0861i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
−0.996+0.0861i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(117,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), −0.996+0.0861i)
|
Particular Values
L(1) |
≈ |
0.0199412−0.461905i |
L(21) |
≈ |
0.0199412−0.461905i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0717−1.41i)T |
good | 3 | 1+(1.31−0.129i)T+(2.94−0.585i)T2 |
| 5 | 1+(1.48−2.78i)T+(−2.77−4.15i)T2 |
| 7 | 1+(−0.373+1.87i)T+(−6.46−2.67i)T2 |
| 11 | 1+(2.23−1.83i)T+(2.14−10.7i)T2 |
| 13 | 1+(2.26−1.21i)T+(7.22−10.8i)T2 |
| 17 | 1+(−2.75−6.64i)T+(−12.0+12.0i)T2 |
| 19 | 1+(−4.33−1.31i)T+(15.7+10.5i)T2 |
| 23 | 1+(−0.470−0.314i)T+(8.80+21.2i)T2 |
| 29 | 1+(0.777−0.947i)T+(−5.65−28.4i)T2 |
| 31 | 1+(3.28+3.28i)T+31iT2 |
| 37 | 1+(−2.08−6.85i)T+(−30.7+20.5i)T2 |
| 41 | 1+(−4.65+6.96i)T+(−15.6−37.8i)T2 |
| 43 | 1+(8.37+0.824i)T+(42.1+8.38i)T2 |
| 47 | 1+(11.2−4.67i)T+(33.2−33.2i)T2 |
| 53 | 1+(2.90+3.54i)T+(−10.3+51.9i)T2 |
| 59 | 1+(−8.29−4.43i)T+(32.7+49.0i)T2 |
| 61 | 1+(0.811+8.23i)T+(−59.8+11.9i)T2 |
| 67 | 1+(0.215+2.19i)T+(−65.7+13.0i)T2 |
| 71 | 1+(−6.18−1.22i)T+(65.5+27.1i)T2 |
| 73 | 1+(−2.35−11.8i)T+(−67.4+27.9i)T2 |
| 79 | 1+(2.74+1.13i)T+(55.8+55.8i)T2 |
| 83 | 1+(−1.28+4.23i)T+(−69.0−46.1i)T2 |
| 89 | 1+(−12.6+8.44i)T+(34.0−82.2i)T2 |
| 97 | 1+(−6.54−6.54i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.32457474949830252480263778983, −12.95907964535700657257577739606, −11.73343769711173988966374788376, −10.65387568730581470624189832976, −9.930150138926385217985657854493, −8.060226375475790552903911321582, −7.34517409175370694173240413464, −6.31937655731691024337732980774, −5.07560159815284717773378902561, −3.61515596763959349715060226890,
0.54774668922782752108278553158, 3.01683119381176204933572057881, 5.02042448383212418728705194454, 5.36030841117322579456432740497, 7.76399101244531153734752801244, 8.764985745810461328147468518644, 9.697570532543029423220210264062, 11.19766358345169616167616918683, 11.82259628832744169848846541781, 12.41646129155511882977057194811