Properties

Label 2-2e7-128.117-c1-0-1
Degree $2$
Conductor $128$
Sign $-0.996 + 0.0861i$
Analytic cond. $1.02208$
Root an. cond. $1.01098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0717 + 1.41i)2-s + (−1.31 + 0.129i)3-s + (−1.98 − 0.202i)4-s + (−1.48 + 2.78i)5-s + (−0.0886 − 1.87i)6-s + (0.373 − 1.87i)7-s + (0.429 − 2.79i)8-s + (−1.22 + 0.243i)9-s + (−3.82 − 2.30i)10-s + (−2.23 + 1.83i)11-s + (2.64 + 0.00899i)12-s + (−2.26 + 1.21i)13-s + (2.62 + 0.662i)14-s + (1.59 − 3.86i)15-s + (3.91 + 0.806i)16-s + (2.75 + 6.64i)17-s + ⋯
L(s)  = 1  + (−0.0507 + 0.998i)2-s + (−0.760 + 0.0749i)3-s + (−0.994 − 0.101i)4-s + (−0.665 + 1.24i)5-s + (−0.0362 − 0.763i)6-s + (0.141 − 0.710i)7-s + (0.151 − 0.988i)8-s + (−0.407 + 0.0810i)9-s + (−1.20 − 0.727i)10-s + (−0.673 + 0.552i)11-s + (0.764 + 0.00259i)12-s + (−0.628 + 0.335i)13-s + (0.702 + 0.177i)14-s + (0.413 − 0.997i)15-s + (0.979 + 0.201i)16-s + (0.667 + 1.61i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 + 0.0861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 + 0.0861i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $-0.996 + 0.0861i$
Analytic conductor: \(1.02208\)
Root analytic conductor: \(1.01098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{128} (117, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :1/2),\ -0.996 + 0.0861i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0199412 - 0.461905i\)
\(L(\frac12)\) \(\approx\) \(0.0199412 - 0.461905i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.0717 - 1.41i)T \)
good3 \( 1 + (1.31 - 0.129i)T + (2.94 - 0.585i)T^{2} \)
5 \( 1 + (1.48 - 2.78i)T + (-2.77 - 4.15i)T^{2} \)
7 \( 1 + (-0.373 + 1.87i)T + (-6.46 - 2.67i)T^{2} \)
11 \( 1 + (2.23 - 1.83i)T + (2.14 - 10.7i)T^{2} \)
13 \( 1 + (2.26 - 1.21i)T + (7.22 - 10.8i)T^{2} \)
17 \( 1 + (-2.75 - 6.64i)T + (-12.0 + 12.0i)T^{2} \)
19 \( 1 + (-4.33 - 1.31i)T + (15.7 + 10.5i)T^{2} \)
23 \( 1 + (-0.470 - 0.314i)T + (8.80 + 21.2i)T^{2} \)
29 \( 1 + (0.777 - 0.947i)T + (-5.65 - 28.4i)T^{2} \)
31 \( 1 + (3.28 + 3.28i)T + 31iT^{2} \)
37 \( 1 + (-2.08 - 6.85i)T + (-30.7 + 20.5i)T^{2} \)
41 \( 1 + (-4.65 + 6.96i)T + (-15.6 - 37.8i)T^{2} \)
43 \( 1 + (8.37 + 0.824i)T + (42.1 + 8.38i)T^{2} \)
47 \( 1 + (11.2 - 4.67i)T + (33.2 - 33.2i)T^{2} \)
53 \( 1 + (2.90 + 3.54i)T + (-10.3 + 51.9i)T^{2} \)
59 \( 1 + (-8.29 - 4.43i)T + (32.7 + 49.0i)T^{2} \)
61 \( 1 + (0.811 + 8.23i)T + (-59.8 + 11.9i)T^{2} \)
67 \( 1 + (0.215 + 2.19i)T + (-65.7 + 13.0i)T^{2} \)
71 \( 1 + (-6.18 - 1.22i)T + (65.5 + 27.1i)T^{2} \)
73 \( 1 + (-2.35 - 11.8i)T + (-67.4 + 27.9i)T^{2} \)
79 \( 1 + (2.74 + 1.13i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 + (-1.28 + 4.23i)T + (-69.0 - 46.1i)T^{2} \)
89 \( 1 + (-12.6 + 8.44i)T + (34.0 - 82.2i)T^{2} \)
97 \( 1 + (-6.54 - 6.54i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32457474949830252480263778983, −12.95907964535700657257577739606, −11.73343769711173988966374788376, −10.65387568730581470624189832976, −9.930150138926385217985657854493, −8.060226375475790552903911321582, −7.34517409175370694173240413464, −6.31937655731691024337732980774, −5.07560159815284717773378902561, −3.61515596763959349715060226890, 0.54774668922782752108278553158, 3.01683119381176204933572057881, 5.02042448383212418728705194454, 5.36030841117322579456432740497, 7.76399101244531153734752801244, 8.764985745810461328147468518644, 9.697570532543029423220210264062, 11.19766358345169616167616918683, 11.82259628832744169848846541781, 12.41646129155511882977057194811

Graph of the $Z$-function along the critical line