L(s) = 1 | + (−0.766 + 1.18i)2-s + (−1.39 + 0.137i)3-s + (−0.823 − 1.82i)4-s + (1.67 − 3.12i)5-s + (0.906 − 1.76i)6-s + (0.194 − 0.979i)7-s + (2.79 + 0.419i)8-s + (−1.01 + 0.201i)9-s + (2.43 + 4.38i)10-s + (0.362 − 0.297i)11-s + (1.39 + 2.42i)12-s + (5.08 − 2.71i)13-s + (1.01 + 0.982i)14-s + (−1.90 + 4.59i)15-s + (−2.64 + 3.00i)16-s + (−0.701 − 1.69i)17-s + ⋯ |
L(s) = 1 | + (−0.542 + 0.840i)2-s + (−0.805 + 0.0793i)3-s + (−0.411 − 0.911i)4-s + (0.747 − 1.39i)5-s + (0.370 − 0.719i)6-s + (0.0736 − 0.370i)7-s + (0.988 + 0.148i)8-s + (−0.338 + 0.0672i)9-s + (0.769 + 1.38i)10-s + (0.109 − 0.0896i)11-s + (0.403 + 0.701i)12-s + (1.40 − 0.753i)13-s + (0.271 + 0.262i)14-s + (−0.491 + 1.18i)15-s + (−0.660 + 0.750i)16-s + (−0.170 − 0.410i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.909+0.416i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(0.909+0.416i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.909+0.416i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(117,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), 0.909+0.416i)
|
Particular Values
L(1) |
≈ |
0.660579−0.143966i |
L(21) |
≈ |
0.660579−0.143966i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.766−1.18i)T |
good | 3 | 1+(1.39−0.137i)T+(2.94−0.585i)T2 |
| 5 | 1+(−1.67+3.12i)T+(−2.77−4.15i)T2 |
| 7 | 1+(−0.194+0.979i)T+(−6.46−2.67i)T2 |
| 11 | 1+(−0.362+0.297i)T+(2.14−10.7i)T2 |
| 13 | 1+(−5.08+2.71i)T+(7.22−10.8i)T2 |
| 17 | 1+(0.701+1.69i)T+(−12.0+12.0i)T2 |
| 19 | 1+(−0.364−0.110i)T+(15.7+10.5i)T2 |
| 23 | 1+(6.09+4.07i)T+(8.80+21.2i)T2 |
| 29 | 1+(2.16−2.64i)T+(−5.65−28.4i)T2 |
| 31 | 1+(−6.95−6.95i)T+31iT2 |
| 37 | 1+(0.132+0.436i)T+(−30.7+20.5i)T2 |
| 41 | 1+(3.08−4.62i)T+(−15.6−37.8i)T2 |
| 43 | 1+(−2.80−0.276i)T+(42.1+8.38i)T2 |
| 47 | 1+(8.00−3.31i)T+(33.2−33.2i)T2 |
| 53 | 1+(−8.24−10.0i)T+(−10.3+51.9i)T2 |
| 59 | 1+(5.72+3.05i)T+(32.7+49.0i)T2 |
| 61 | 1+(−0.179−1.81i)T+(−59.8+11.9i)T2 |
| 67 | 1+(0.243+2.47i)T+(−65.7+13.0i)T2 |
| 71 | 1+(−14.3−2.85i)T+(65.5+27.1i)T2 |
| 73 | 1+(−1.12−5.63i)T+(−67.4+27.9i)T2 |
| 79 | 1+(1.06+0.443i)T+(55.8+55.8i)T2 |
| 83 | 1+(−4.47+14.7i)T+(−69.0−46.1i)T2 |
| 89 | 1+(11.2−7.52i)T+(34.0−82.2i)T2 |
| 97 | 1+(−1.53−1.53i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.48213717073942826380403602577, −12.33808725449340143361851193676, −10.96047560203678615852904285168, −10.06787992387036214617396140505, −8.830352040574722745228298775385, −8.182844948153348973255150808244, −6.37215820074939902874984749232, −5.62151296893654361400406332720, −4.63211809988441646876116492907, −1.03130998518253711823781677430,
2.12981158143748007574484360709, 3.71449897480664657987646458330, 5.83267561825445283796565631127, 6.70093391890964898094608878120, 8.278925615580897697629443247332, 9.560466092037535343089812522257, 10.49924738695237492359419916064, 11.35713002524675823483361444620, 11.85122053247400249788329795231, 13.41375608575706204420517441284