Properties

Label 2-2e7-128.117-c1-0-6
Degree $2$
Conductor $128$
Sign $0.909 + 0.416i$
Analytic cond. $1.02208$
Root an. cond. $1.01098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 + 1.18i)2-s + (−1.39 + 0.137i)3-s + (−0.823 − 1.82i)4-s + (1.67 − 3.12i)5-s + (0.906 − 1.76i)6-s + (0.194 − 0.979i)7-s + (2.79 + 0.419i)8-s + (−1.01 + 0.201i)9-s + (2.43 + 4.38i)10-s + (0.362 − 0.297i)11-s + (1.39 + 2.42i)12-s + (5.08 − 2.71i)13-s + (1.01 + 0.982i)14-s + (−1.90 + 4.59i)15-s + (−2.64 + 3.00i)16-s + (−0.701 − 1.69i)17-s + ⋯
L(s)  = 1  + (−0.542 + 0.840i)2-s + (−0.805 + 0.0793i)3-s + (−0.411 − 0.911i)4-s + (0.747 − 1.39i)5-s + (0.370 − 0.719i)6-s + (0.0736 − 0.370i)7-s + (0.988 + 0.148i)8-s + (−0.338 + 0.0672i)9-s + (0.769 + 1.38i)10-s + (0.109 − 0.0896i)11-s + (0.403 + 0.701i)12-s + (1.40 − 0.753i)13-s + (0.271 + 0.262i)14-s + (−0.491 + 1.18i)15-s + (−0.660 + 0.750i)16-s + (−0.170 − 0.410i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 + 0.416i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.909 + 0.416i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $0.909 + 0.416i$
Analytic conductor: \(1.02208\)
Root analytic conductor: \(1.01098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{128} (117, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :1/2),\ 0.909 + 0.416i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.660579 - 0.143966i\)
\(L(\frac12)\) \(\approx\) \(0.660579 - 0.143966i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 - 1.18i)T \)
good3 \( 1 + (1.39 - 0.137i)T + (2.94 - 0.585i)T^{2} \)
5 \( 1 + (-1.67 + 3.12i)T + (-2.77 - 4.15i)T^{2} \)
7 \( 1 + (-0.194 + 0.979i)T + (-6.46 - 2.67i)T^{2} \)
11 \( 1 + (-0.362 + 0.297i)T + (2.14 - 10.7i)T^{2} \)
13 \( 1 + (-5.08 + 2.71i)T + (7.22 - 10.8i)T^{2} \)
17 \( 1 + (0.701 + 1.69i)T + (-12.0 + 12.0i)T^{2} \)
19 \( 1 + (-0.364 - 0.110i)T + (15.7 + 10.5i)T^{2} \)
23 \( 1 + (6.09 + 4.07i)T + (8.80 + 21.2i)T^{2} \)
29 \( 1 + (2.16 - 2.64i)T + (-5.65 - 28.4i)T^{2} \)
31 \( 1 + (-6.95 - 6.95i)T + 31iT^{2} \)
37 \( 1 + (0.132 + 0.436i)T + (-30.7 + 20.5i)T^{2} \)
41 \( 1 + (3.08 - 4.62i)T + (-15.6 - 37.8i)T^{2} \)
43 \( 1 + (-2.80 - 0.276i)T + (42.1 + 8.38i)T^{2} \)
47 \( 1 + (8.00 - 3.31i)T + (33.2 - 33.2i)T^{2} \)
53 \( 1 + (-8.24 - 10.0i)T + (-10.3 + 51.9i)T^{2} \)
59 \( 1 + (5.72 + 3.05i)T + (32.7 + 49.0i)T^{2} \)
61 \( 1 + (-0.179 - 1.81i)T + (-59.8 + 11.9i)T^{2} \)
67 \( 1 + (0.243 + 2.47i)T + (-65.7 + 13.0i)T^{2} \)
71 \( 1 + (-14.3 - 2.85i)T + (65.5 + 27.1i)T^{2} \)
73 \( 1 + (-1.12 - 5.63i)T + (-67.4 + 27.9i)T^{2} \)
79 \( 1 + (1.06 + 0.443i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 + (-4.47 + 14.7i)T + (-69.0 - 46.1i)T^{2} \)
89 \( 1 + (11.2 - 7.52i)T + (34.0 - 82.2i)T^{2} \)
97 \( 1 + (-1.53 - 1.53i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48213717073942826380403602577, −12.33808725449340143361851193676, −10.96047560203678615852904285168, −10.06787992387036214617396140505, −8.830352040574722745228298775385, −8.182844948153348973255150808244, −6.37215820074939902874984749232, −5.62151296893654361400406332720, −4.63211809988441646876116492907, −1.03130998518253711823781677430, 2.12981158143748007574484360709, 3.71449897480664657987646458330, 5.83267561825445283796565631127, 6.70093391890964898094608878120, 8.278925615580897697629443247332, 9.560466092037535343089812522257, 10.49924738695237492359419916064, 11.35713002524675823483361444620, 11.85122053247400249788329795231, 13.41375608575706204420517441284

Graph of the $Z$-function along the critical line