L(s) = 1 | + (1.37 + 0.321i)2-s + (−0.194 + 0.0191i)3-s + (1.79 + 0.884i)4-s + (−0.448 + 0.838i)5-s + (−0.274 − 0.0361i)6-s + (0.394 − 1.98i)7-s + (2.18 + 1.79i)8-s + (−2.90 + 0.577i)9-s + (−0.886 + 1.01i)10-s + (1.96 − 1.61i)11-s + (−0.366 − 0.137i)12-s + (−3.43 + 1.83i)13-s + (1.18 − 2.60i)14-s + (0.0712 − 0.172i)15-s + (2.43 + 3.17i)16-s + (−2.58 − 6.25i)17-s + ⋯ |
L(s) = 1 | + (0.973 + 0.227i)2-s + (−0.112 + 0.0110i)3-s + (0.896 + 0.442i)4-s + (−0.200 + 0.375i)5-s + (−0.112 − 0.0147i)6-s + (0.149 − 0.749i)7-s + (0.773 + 0.634i)8-s + (−0.968 + 0.192i)9-s + (−0.280 + 0.319i)10-s + (0.591 − 0.485i)11-s + (−0.105 − 0.0398i)12-s + (−0.952 + 0.509i)13-s + (0.315 − 0.696i)14-s + (0.0184 − 0.0444i)15-s + (0.608 + 0.793i)16-s + (−0.627 − 1.51i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.917−0.398i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(0.917−0.398i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.917−0.398i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(117,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), 0.917−0.398i)
|
Particular Values
L(1) |
≈ |
1.62901+0.338223i |
L(21) |
≈ |
1.62901+0.338223i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.37−0.321i)T |
good | 3 | 1+(0.194−0.0191i)T+(2.94−0.585i)T2 |
| 5 | 1+(0.448−0.838i)T+(−2.77−4.15i)T2 |
| 7 | 1+(−0.394+1.98i)T+(−6.46−2.67i)T2 |
| 11 | 1+(−1.96+1.61i)T+(2.14−10.7i)T2 |
| 13 | 1+(3.43−1.83i)T+(7.22−10.8i)T2 |
| 17 | 1+(2.58+6.25i)T+(−12.0+12.0i)T2 |
| 19 | 1+(−1.58−0.481i)T+(15.7+10.5i)T2 |
| 23 | 1+(4.28+2.86i)T+(8.80+21.2i)T2 |
| 29 | 1+(3.65−4.45i)T+(−5.65−28.4i)T2 |
| 31 | 1+(1.49+1.49i)T+31iT2 |
| 37 | 1+(−0.443−1.46i)T+(−30.7+20.5i)T2 |
| 41 | 1+(−1.49+2.23i)T+(−15.6−37.8i)T2 |
| 43 | 1+(−10.6−1.05i)T+(42.1+8.38i)T2 |
| 47 | 1+(1.16−0.483i)T+(33.2−33.2i)T2 |
| 53 | 1+(−5.69−6.93i)T+(−10.3+51.9i)T2 |
| 59 | 1+(1.42+0.761i)T+(32.7+49.0i)T2 |
| 61 | 1+(−0.332−3.37i)T+(−59.8+11.9i)T2 |
| 67 | 1+(0.689+6.99i)T+(−65.7+13.0i)T2 |
| 71 | 1+(7.67+1.52i)T+(65.5+27.1i)T2 |
| 73 | 1+(−0.201−1.01i)T+(−67.4+27.9i)T2 |
| 79 | 1+(−13.7−5.68i)T+(55.8+55.8i)T2 |
| 83 | 1+(4.86−16.0i)T+(−69.0−46.1i)T2 |
| 89 | 1+(−3.43+2.29i)T+(34.0−82.2i)T2 |
| 97 | 1+(2.61+2.61i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.88652973577278203056725529470, −12.34734421677500706895817564684, −11.44858832526688242639254044723, −10.81356096432277234563760535091, −9.157673383030713216975799955780, −7.61723990626742097614671714435, −6.81968061437001885752769531783, −5.46502652224407135104389729903, −4.20437919970744213361785557843, −2.74807047629660629955399762809,
2.31774303233298479256069002590, 4.00648795899222448798296577920, 5.35599550690896296346651729793, 6.26876987761105405330152098634, 7.80664412898919681221695353818, 9.113892659434563214486975913960, 10.43516904324412324326654474066, 11.66857183307663438416410174160, 12.20162109319998872676656227536, 13.09320794422319658183193402657