Properties

Label 2-2e7-128.117-c1-0-8
Degree $2$
Conductor $128$
Sign $0.917 - 0.398i$
Analytic cond. $1.02208$
Root an. cond. $1.01098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.37 + 0.321i)2-s + (−0.194 + 0.0191i)3-s + (1.79 + 0.884i)4-s + (−0.448 + 0.838i)5-s + (−0.274 − 0.0361i)6-s + (0.394 − 1.98i)7-s + (2.18 + 1.79i)8-s + (−2.90 + 0.577i)9-s + (−0.886 + 1.01i)10-s + (1.96 − 1.61i)11-s + (−0.366 − 0.137i)12-s + (−3.43 + 1.83i)13-s + (1.18 − 2.60i)14-s + (0.0712 − 0.172i)15-s + (2.43 + 3.17i)16-s + (−2.58 − 6.25i)17-s + ⋯
L(s)  = 1  + (0.973 + 0.227i)2-s + (−0.112 + 0.0110i)3-s + (0.896 + 0.442i)4-s + (−0.200 + 0.375i)5-s + (−0.112 − 0.0147i)6-s + (0.149 − 0.749i)7-s + (0.773 + 0.634i)8-s + (−0.968 + 0.192i)9-s + (−0.280 + 0.319i)10-s + (0.591 − 0.485i)11-s + (−0.105 − 0.0398i)12-s + (−0.952 + 0.509i)13-s + (0.315 − 0.696i)14-s + (0.0184 − 0.0444i)15-s + (0.608 + 0.793i)16-s + (−0.627 − 1.51i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 - 0.398i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 - 0.398i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $0.917 - 0.398i$
Analytic conductor: \(1.02208\)
Root analytic conductor: \(1.01098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{128} (117, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :1/2),\ 0.917 - 0.398i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.62901 + 0.338223i\)
\(L(\frac12)\) \(\approx\) \(1.62901 + 0.338223i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.37 - 0.321i)T \)
good3 \( 1 + (0.194 - 0.0191i)T + (2.94 - 0.585i)T^{2} \)
5 \( 1 + (0.448 - 0.838i)T + (-2.77 - 4.15i)T^{2} \)
7 \( 1 + (-0.394 + 1.98i)T + (-6.46 - 2.67i)T^{2} \)
11 \( 1 + (-1.96 + 1.61i)T + (2.14 - 10.7i)T^{2} \)
13 \( 1 + (3.43 - 1.83i)T + (7.22 - 10.8i)T^{2} \)
17 \( 1 + (2.58 + 6.25i)T + (-12.0 + 12.0i)T^{2} \)
19 \( 1 + (-1.58 - 0.481i)T + (15.7 + 10.5i)T^{2} \)
23 \( 1 + (4.28 + 2.86i)T + (8.80 + 21.2i)T^{2} \)
29 \( 1 + (3.65 - 4.45i)T + (-5.65 - 28.4i)T^{2} \)
31 \( 1 + (1.49 + 1.49i)T + 31iT^{2} \)
37 \( 1 + (-0.443 - 1.46i)T + (-30.7 + 20.5i)T^{2} \)
41 \( 1 + (-1.49 + 2.23i)T + (-15.6 - 37.8i)T^{2} \)
43 \( 1 + (-10.6 - 1.05i)T + (42.1 + 8.38i)T^{2} \)
47 \( 1 + (1.16 - 0.483i)T + (33.2 - 33.2i)T^{2} \)
53 \( 1 + (-5.69 - 6.93i)T + (-10.3 + 51.9i)T^{2} \)
59 \( 1 + (1.42 + 0.761i)T + (32.7 + 49.0i)T^{2} \)
61 \( 1 + (-0.332 - 3.37i)T + (-59.8 + 11.9i)T^{2} \)
67 \( 1 + (0.689 + 6.99i)T + (-65.7 + 13.0i)T^{2} \)
71 \( 1 + (7.67 + 1.52i)T + (65.5 + 27.1i)T^{2} \)
73 \( 1 + (-0.201 - 1.01i)T + (-67.4 + 27.9i)T^{2} \)
79 \( 1 + (-13.7 - 5.68i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 + (4.86 - 16.0i)T + (-69.0 - 46.1i)T^{2} \)
89 \( 1 + (-3.43 + 2.29i)T + (34.0 - 82.2i)T^{2} \)
97 \( 1 + (2.61 + 2.61i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88652973577278203056725529470, −12.34734421677500706895817564684, −11.44858832526688242639254044723, −10.81356096432277234563760535091, −9.157673383030713216975799955780, −7.61723990626742097614671714435, −6.81968061437001885752769531783, −5.46502652224407135104389729903, −4.20437919970744213361785557843, −2.74807047629660629955399762809, 2.31774303233298479256069002590, 4.00648795899222448798296577920, 5.35599550690896296346651729793, 6.26876987761105405330152098634, 7.80664412898919681221695353818, 9.113892659434563214486975913960, 10.43516904324412324326654474066, 11.66857183307663438416410174160, 12.20162109319998872676656227536, 13.09320794422319658183193402657

Graph of the $Z$-function along the critical line