L(s) = 1 | − 9-s − 2·17-s + 25-s + 2·41-s + 49-s − 2·73-s + 81-s − 2·89-s − 2·97-s + 2·113-s + ⋯ |
L(s) = 1 | − 9-s − 2·17-s + 25-s + 2·41-s + 49-s − 2·73-s + 81-s − 2·89-s − 2·97-s + 2·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5827916324\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5827916324\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + T^{2} \) |
| 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 + T )^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 + T )^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 + T )^{2} \) |
| 97 | \( ( 1 + T )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.60653957404905351544532534862, −12.62730928344066147828554111521, −11.40941624187610021847514464408, −10.72859342897654553267618939149, −9.220994759867439580089527677520, −8.461795530674634695923023014770, −7.02072783744560160256463601653, −5.84282968988336850818779137015, −4.41060008842499151557844234715, −2.63592829534740587398498486196,
2.63592829534740587398498486196, 4.41060008842499151557844234715, 5.84282968988336850818779137015, 7.02072783744560160256463601653, 8.461795530674634695923023014770, 9.220994759867439580089527677520, 10.72859342897654553267618939149, 11.40941624187610021847514464408, 12.62730928344066147828554111521, 13.60653957404905351544532534862