L(s) = 1 | − 9-s − 2·17-s + 25-s + 2·41-s + 49-s − 2·73-s + 81-s − 2·89-s − 2·97-s + 2·113-s + ⋯ |
L(s) = 1 | − 9-s − 2·17-s + 25-s + 2·41-s + 49-s − 2·73-s + 81-s − 2·89-s − 2·97-s + 2·113-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(128s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
1
|
Analytic conductor: |
0.0638803 |
Root analytic conductor: |
0.252745 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ128(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.5827916324 |
L(21) |
≈ |
0.5827916324 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+T2 |
| 5 | (1−T)(1+T) |
| 7 | (1−T)(1+T) |
| 11 | 1+T2 |
| 13 | (1−T)(1+T) |
| 17 | (1+T)2 |
| 19 | 1+T2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | (1−T)2 |
| 43 | 1+T2 |
| 47 | (1−T)(1+T) |
| 53 | (1−T)(1+T) |
| 59 | 1+T2 |
| 61 | (1−T)(1+T) |
| 67 | 1+T2 |
| 71 | (1−T)(1+T) |
| 73 | (1+T)2 |
| 79 | (1−T)(1+T) |
| 83 | 1+T2 |
| 89 | (1+T)2 |
| 97 | (1+T)2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.60653957404905351544532534862, −12.62730928344066147828554111521, −11.40941624187610021847514464408, −10.72859342897654553267618939149, −9.220994759867439580089527677520, −8.461795530674634695923023014770, −7.02072783744560160256463601653, −5.84282968988336850818779137015, −4.41060008842499151557844234715, −2.63592829534740587398498486196,
2.63592829534740587398498486196, 4.41060008842499151557844234715, 5.84282968988336850818779137015, 7.02072783744560160256463601653, 8.461795530674634695923023014770, 9.220994759867439580089527677520, 10.72859342897654553267618939149, 11.40941624187610021847514464408, 12.62730928344066147828554111521, 13.60653957404905351544532534862