L(s) = 1 | + 6.32·3-s − 17.8·5-s + 22.6·7-s + 13.0·9-s + 44.2·11-s − 17.8·13-s − 113.·15-s + 70·17-s + 82.2·19-s + 143.·21-s + 158.·23-s + 195.·25-s − 88.5·27-s + 125.·29-s + 280·33-s − 404.·35-s − 375.·37-s − 113.·39-s + 182·41-s − 132.·43-s − 232.·45-s + 316.·47-s + 169.·49-s + 442.·51-s + 125.·53-s − 791.·55-s + 520·57-s + ⋯ |
L(s) = 1 | + 1.21·3-s − 1.60·5-s + 1.22·7-s + 0.481·9-s + 1.21·11-s − 0.381·13-s − 1.94·15-s + 0.998·17-s + 0.992·19-s + 1.48·21-s + 1.43·23-s + 1.56·25-s − 0.631·27-s + 0.801·29-s + 1.47·33-s − 1.95·35-s − 1.66·37-s − 0.464·39-s + 0.693·41-s − 0.471·43-s − 0.770·45-s + 0.983·47-s + 0.492·49-s + 1.21·51-s + 0.324·53-s − 1.94·55-s + 1.20·57-s + ⋯ |
Λ(s)=(=(256s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(256s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.526310059 |
L(21) |
≈ |
2.526310059 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−6.32T+27T2 |
| 5 | 1+17.8T+125T2 |
| 7 | 1−22.6T+343T2 |
| 11 | 1−44.2T+1.33e3T2 |
| 13 | 1+17.8T+2.19e3T2 |
| 17 | 1−70T+4.91e3T2 |
| 19 | 1−82.2T+6.85e3T2 |
| 23 | 1−158.T+1.21e4T2 |
| 29 | 1−125.T+2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1+375.T+5.06e4T2 |
| 41 | 1−182T+6.89e4T2 |
| 43 | 1+132.T+7.95e4T2 |
| 47 | 1−316.T+1.03e5T2 |
| 53 | 1−125.T+1.48e5T2 |
| 59 | 1+82.2T+2.05e5T2 |
| 61 | 1+232.T+2.26e5T2 |
| 67 | 1+221.T+3.00e5T2 |
| 71 | 1−113.T+3.57e5T2 |
| 73 | 1+910T+3.89e5T2 |
| 79 | 1−678.T+4.93e5T2 |
| 83 | 1−714.T+5.71e5T2 |
| 89 | 1−546T+7.04e5T2 |
| 97 | 1+490T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.79241142976214084938224259015, −10.78053927458870975516483751194, −9.285986175938985519340728425500, −8.532196739042168954869126170542, −7.77110021882884065442369727389, −7.12573394853413171373022686224, −5.06133754337830436455469454741, −3.94581939992963004162318102018, −3.06148260417604879894659198697, −1.22451930226900963150378655118,
1.22451930226900963150378655118, 3.06148260417604879894659198697, 3.94581939992963004162318102018, 5.06133754337830436455469454741, 7.12573394853413171373022686224, 7.77110021882884065442369727389, 8.532196739042168954869126170542, 9.285986175938985519340728425500, 10.78053927458870975516483751194, 11.79241142976214084938224259015