Properties

Label 2-2e8-1.1-c3-0-6
Degree $2$
Conductor $256$
Sign $1$
Analytic cond. $15.1044$
Root an. cond. $3.88644$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.32·3-s − 17.8·5-s + 22.6·7-s + 13.0·9-s + 44.2·11-s − 17.8·13-s − 113.·15-s + 70·17-s + 82.2·19-s + 143.·21-s + 158.·23-s + 195.·25-s − 88.5·27-s + 125.·29-s + 280·33-s − 404.·35-s − 375.·37-s − 113.·39-s + 182·41-s − 132.·43-s − 232.·45-s + 316.·47-s + 169.·49-s + 442.·51-s + 125.·53-s − 791.·55-s + 520·57-s + ⋯
L(s)  = 1  + 1.21·3-s − 1.60·5-s + 1.22·7-s + 0.481·9-s + 1.21·11-s − 0.381·13-s − 1.94·15-s + 0.998·17-s + 0.992·19-s + 1.48·21-s + 1.43·23-s + 1.56·25-s − 0.631·27-s + 0.801·29-s + 1.47·33-s − 1.95·35-s − 1.66·37-s − 0.464·39-s + 0.693·41-s − 0.471·43-s − 0.770·45-s + 0.983·47-s + 0.492·49-s + 1.21·51-s + 0.324·53-s − 1.94·55-s + 1.20·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(15.1044\)
Root analytic conductor: \(3.88644\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.526310059\)
\(L(\frac12)\) \(\approx\) \(2.526310059\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 6.32T + 27T^{2} \)
5 \( 1 + 17.8T + 125T^{2} \)
7 \( 1 - 22.6T + 343T^{2} \)
11 \( 1 - 44.2T + 1.33e3T^{2} \)
13 \( 1 + 17.8T + 2.19e3T^{2} \)
17 \( 1 - 70T + 4.91e3T^{2} \)
19 \( 1 - 82.2T + 6.85e3T^{2} \)
23 \( 1 - 158.T + 1.21e4T^{2} \)
29 \( 1 - 125.T + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 + 375.T + 5.06e4T^{2} \)
41 \( 1 - 182T + 6.89e4T^{2} \)
43 \( 1 + 132.T + 7.95e4T^{2} \)
47 \( 1 - 316.T + 1.03e5T^{2} \)
53 \( 1 - 125.T + 1.48e5T^{2} \)
59 \( 1 + 82.2T + 2.05e5T^{2} \)
61 \( 1 + 232.T + 2.26e5T^{2} \)
67 \( 1 + 221.T + 3.00e5T^{2} \)
71 \( 1 - 113.T + 3.57e5T^{2} \)
73 \( 1 + 910T + 3.89e5T^{2} \)
79 \( 1 - 678.T + 4.93e5T^{2} \)
83 \( 1 - 714.T + 5.71e5T^{2} \)
89 \( 1 - 546T + 7.04e5T^{2} \)
97 \( 1 + 490T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.79241142976214084938224259015, −10.78053927458870975516483751194, −9.285986175938985519340728425500, −8.532196739042168954869126170542, −7.77110021882884065442369727389, −7.12573394853413171373022686224, −5.06133754337830436455469454741, −3.94581939992963004162318102018, −3.06148260417604879894659198697, −1.22451930226900963150378655118, 1.22451930226900963150378655118, 3.06148260417604879894659198697, 3.94581939992963004162318102018, 5.06133754337830436455469454741, 7.12573394853413171373022686224, 7.77110021882884065442369727389, 8.532196739042168954869126170542, 9.285986175938985519340728425500, 10.78053927458870975516483751194, 11.79241142976214084938224259015

Graph of the $Z$-function along the critical line