L(s) = 1 | − 556·5-s − 2.18e3·9-s + 1.31e4·13-s + 4.00e4·17-s + 2.31e5·25-s − 1.20e5·29-s − 2.48e5·37-s − 9.53e3·41-s + 1.21e6·45-s − 8.23e5·49-s − 2.01e6·53-s − 5.32e5·61-s − 7.28e6·65-s + 3.91e6·73-s + 4.78e6·81-s − 2.22e7·85-s + 9.24e6·89-s + 1.75e7·97-s + 1.58e7·101-s − 1.22e7·109-s − 2.91e7·113-s − 2.86e7·117-s + ⋯ |
L(s) = 1 | − 1.98·5-s − 9-s + 1.65·13-s + 1.97·17-s + 2.95·25-s − 0.920·29-s − 0.805·37-s − 0.0215·41-s + 1.98·45-s − 49-s − 1.85·53-s − 0.300·61-s − 3.29·65-s + 1.17·73-s + 81-s − 3.93·85-s + 1.39·89-s + 1.95·97-s + 1.53·101-s − 0.904·109-s − 1.89·113-s − 1.65·117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + p^{7} T^{2} \) |
| 5 | \( 1 + 556 T + p^{7} T^{2} \) |
| 7 | \( 1 + p^{7} T^{2} \) |
| 11 | \( 1 + p^{7} T^{2} \) |
| 13 | \( 1 - 13108 T + p^{7} T^{2} \) |
| 17 | \( 1 - 40094 T + p^{7} T^{2} \) |
| 19 | \( 1 + p^{7} T^{2} \) |
| 23 | \( 1 + p^{7} T^{2} \) |
| 29 | \( 1 + 120844 T + p^{7} T^{2} \) |
| 31 | \( 1 + p^{7} T^{2} \) |
| 37 | \( 1 + 248316 T + p^{7} T^{2} \) |
| 41 | \( 1 + 9530 T + p^{7} T^{2} \) |
| 43 | \( 1 + p^{7} T^{2} \) |
| 47 | \( 1 + p^{7} T^{2} \) |
| 53 | \( 1 + 2015212 T + p^{7} T^{2} \) |
| 59 | \( 1 + p^{7} T^{2} \) |
| 61 | \( 1 + 532572 T + p^{7} T^{2} \) |
| 67 | \( 1 + p^{7} T^{2} \) |
| 71 | \( 1 + p^{7} T^{2} \) |
| 73 | \( 1 - 3917418 T + p^{7} T^{2} \) |
| 79 | \( 1 + p^{7} T^{2} \) |
| 83 | \( 1 + p^{7} T^{2} \) |
| 89 | \( 1 - 9246170 T + p^{7} T^{2} \) |
| 97 | \( 1 - 17567406 T + p^{7} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63500213764716300505465416792, −9.052912878512082934936863716820, −8.146433261581757871265124392078, −7.68010767265190532009223347086, −6.30249339916178084884249549062, −5.09693169342656831294553461797, −3.64202246609979349419886742753, −3.30513563310468867474403829355, −1.11337320763100227832990700657, 0,
1.11337320763100227832990700657, 3.30513563310468867474403829355, 3.64202246609979349419886742753, 5.09693169342656831294553461797, 6.30249339916178084884249549062, 7.68010767265190532009223347086, 8.146433261581757871265124392078, 9.052912878512082934936863716820, 10.63500213764716300505465416792