L(s) = 1 | + (−2.51 − 2.51i)3-s + (2.55 − 2.55i)5-s − 2.20i·7-s − 14.3i·9-s + (−31.7 + 31.7i)11-s + (−28.5 − 28.5i)13-s − 12.8·15-s + 87.3·17-s + (−33.6 − 33.6i)19-s + (−5.54 + 5.54i)21-s + 60.0i·23-s + 111. i·25-s + (−104. + 104. i)27-s + (−161. − 161. i)29-s − 323.·31-s + ⋯ |
L(s) = 1 | + (−0.484 − 0.484i)3-s + (0.228 − 0.228i)5-s − 0.118i·7-s − 0.531i·9-s + (−0.870 + 0.870i)11-s + (−0.609 − 0.609i)13-s − 0.221·15-s + 1.24·17-s + (−0.406 − 0.406i)19-s + (−0.0575 + 0.0575i)21-s + 0.544i·23-s + 0.895i·25-s + (−0.741 + 0.741i)27-s + (−1.03 − 1.03i)29-s − 1.87·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.382i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.1931908666\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1931908666\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (2.51 + 2.51i)T + 27iT^{2} \) |
| 5 | \( 1 + (-2.55 + 2.55i)T - 125iT^{2} \) |
| 7 | \( 1 + 2.20iT - 343T^{2} \) |
| 11 | \( 1 + (31.7 - 31.7i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (28.5 + 28.5i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 87.3T + 4.91e3T^{2} \) |
| 19 | \( 1 + (33.6 + 33.6i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 60.0iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (161. + 161. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 323.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (222. - 222. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 133. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (82.9 - 82.9i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 304.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-40.8 + 40.8i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (318. - 318. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (284. + 284. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-242. - 242. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 608. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 582. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.15e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + (216. + 216. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 115. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 940.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12261241609894862721331532027, −10.02192909626402719689260749611, −9.301589453648094546179267201401, −7.78313220633816476480337536339, −7.17311485554276625657177616097, −5.81543261300969324693663603232, −5.04140796661906310833691871576, −3.37872500523926382872930568947, −1.70388204583529606345716662362, −0.07650135148255428198993502651,
2.15648937151591493966742571776, 3.66854200045202984825199185026, 5.14635347243701467119206568380, 5.75611344783230291291923888511, 7.18954130980594165638080332799, 8.207353288524347930356177646788, 9.371579566214895719581151022209, 10.50408293957309953622100267072, 10.83608579761440287835631979695, 12.05622733702109813946281807674