Properties

Label 2-30-1.1-c5-0-0
Degree $2$
Conductor $30$
Sign $1$
Analytic cond. $4.81151$
Root an. cond. $2.19351$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s − 25·5-s − 36·6-s + 164·7-s − 64·8-s + 81·9-s + 100·10-s + 720·11-s + 144·12-s + 698·13-s − 656·14-s − 225·15-s + 256·16-s − 2.22e3·17-s − 324·18-s + 356·19-s − 400·20-s + 1.47e3·21-s − 2.88e3·22-s − 1.80e3·23-s − 576·24-s + 625·25-s − 2.79e3·26-s + 729·27-s + 2.62e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 1.26·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.79·11-s + 0.288·12-s + 1.14·13-s − 0.894·14-s − 0.258·15-s + 1/4·16-s − 1.86·17-s − 0.235·18-s + 0.226·19-s − 0.223·20-s + 0.730·21-s − 1.26·22-s − 0.709·23-s − 0.204·24-s + 1/5·25-s − 0.809·26-s + 0.192·27-s + 0.632·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(4.81151\)
Root analytic conductor: \(2.19351\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 30,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.458841352\)
\(L(\frac12)\) \(\approx\) \(1.458841352\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 - p^{2} T \)
5 \( 1 + p^{2} T \)
good7 \( 1 - 164 T + p^{5} T^{2} \)
11 \( 1 - 720 T + p^{5} T^{2} \)
13 \( 1 - 698 T + p^{5} T^{2} \)
17 \( 1 + 2226 T + p^{5} T^{2} \)
19 \( 1 - 356 T + p^{5} T^{2} \)
23 \( 1 + 1800 T + p^{5} T^{2} \)
29 \( 1 - 714 T + p^{5} T^{2} \)
31 \( 1 - 848 T + p^{5} T^{2} \)
37 \( 1 + 11302 T + p^{5} T^{2} \)
41 \( 1 - 9354 T + p^{5} T^{2} \)
43 \( 1 + 5956 T + p^{5} T^{2} \)
47 \( 1 + 11160 T + p^{5} T^{2} \)
53 \( 1 - 14106 T + p^{5} T^{2} \)
59 \( 1 - 7920 T + p^{5} T^{2} \)
61 \( 1 + 13450 T + p^{5} T^{2} \)
67 \( 1 + 65476 T + p^{5} T^{2} \)
71 \( 1 - 34560 T + p^{5} T^{2} \)
73 \( 1 - 86258 T + p^{5} T^{2} \)
79 \( 1 + 108832 T + p^{5} T^{2} \)
83 \( 1 - 10668 T + p^{5} T^{2} \)
89 \( 1 - 10818 T + p^{5} T^{2} \)
97 \( 1 - 4418 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94555312174174865711132164202, −14.86302060930957981860331875808, −13.77877578714911157333514521648, −11.83168852078855017053567342381, −10.95744662170537519521873514322, −9.064107112878465724010180757793, −8.282969272695719530922799699845, −6.70048339117703975819519283748, −4.09924323660202214116565515612, −1.57672569632174089259606546347, 1.57672569632174089259606546347, 4.09924323660202214116565515612, 6.70048339117703975819519283748, 8.282969272695719530922799699845, 9.064107112878465724010180757793, 10.95744662170537519521873514322, 11.83168852078855017053567342381, 13.77877578714911157333514521648, 14.86302060930957981860331875808, 15.94555312174174865711132164202

Graph of the $Z$-function along the critical line