Properties

Label 2-30-1.1-c9-0-4
Degree $2$
Conductor $30$
Sign $-1$
Analytic cond. $15.4510$
Root an. cond. $3.93078$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s − 81·3-s + 256·4-s − 625·5-s + 1.29e3·6-s + 6.33e3·7-s − 4.09e3·8-s + 6.56e3·9-s + 1.00e4·10-s + 7.75e3·11-s − 2.07e4·12-s + 7.26e4·13-s − 1.01e5·14-s + 5.06e4·15-s + 6.55e4·16-s − 3.34e5·17-s − 1.04e5·18-s − 9.34e5·19-s − 1.60e5·20-s − 5.12e5·21-s − 1.24e5·22-s − 9.91e5·23-s + 3.31e5·24-s + 3.90e5·25-s − 1.16e6·26-s − 5.31e5·27-s + 1.62e6·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.996·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.159·11-s − 0.288·12-s + 0.705·13-s − 0.704·14-s + 0.258·15-s + 1/4·16-s − 0.971·17-s − 0.235·18-s − 1.64·19-s − 0.223·20-s − 0.575·21-s − 0.112·22-s − 0.738·23-s + 0.204·24-s + 1/5·25-s − 0.498·26-s − 0.192·27-s + 0.498·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(15.4510\)
Root analytic conductor: \(3.93078\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{4} T \)
3 \( 1 + p^{4} T \)
5 \( 1 + p^{4} T \)
good7 \( 1 - 6332 T + p^{9} T^{2} \)
11 \( 1 - 7752 T + p^{9} T^{2} \)
13 \( 1 - 72626 T + p^{9} T^{2} \)
17 \( 1 + 334698 T + p^{9} T^{2} \)
19 \( 1 + 934660 T + p^{9} T^{2} \)
23 \( 1 + 991704 T + p^{9} T^{2} \)
29 \( 1 + 3638790 T + p^{9} T^{2} \)
31 \( 1 + 6063688 T + p^{9} T^{2} \)
37 \( 1 - 12489842 T + p^{9} T^{2} \)
41 \( 1 + 5035398 T + p^{9} T^{2} \)
43 \( 1 - 30163316 T + p^{9} T^{2} \)
47 \( 1 + 743928 T + p^{9} T^{2} \)
53 \( 1 + 102388134 T + p^{9} T^{2} \)
59 \( 1 + 49464840 T + p^{9} T^{2} \)
61 \( 1 + 130545898 T + p^{9} T^{2} \)
67 \( 1 - 102905012 T + p^{9} T^{2} \)
71 \( 1 + 190423008 T + p^{9} T^{2} \)
73 \( 1 + 367621054 T + p^{9} T^{2} \)
79 \( 1 - 175880360 T + p^{9} T^{2} \)
83 \( 1 + 100482444 T + p^{9} T^{2} \)
89 \( 1 + 660904110 T + p^{9} T^{2} \)
97 \( 1 - 1321991522 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.63330731020284037645072392855, −12.82679630404834726985780276107, −11.37483984003614993070821900736, −10.77979357808863839846644826561, −8.945193643532061105983837905685, −7.73388401013009046033064927534, −6.18356425069232485776447133116, −4.30424035883560361722790727801, −1.76411988055228078121422831521, 0, 1.76411988055228078121422831521, 4.30424035883560361722790727801, 6.18356425069232485776447133116, 7.73388401013009046033064927534, 8.945193643532061105983837905685, 10.77979357808863839846644826561, 11.37483984003614993070821900736, 12.82679630404834726985780276107, 14.63330731020284037645072392855

Graph of the $Z$-function along the critical line