L(s) = 1 | + (−0.893 + 1.09i)2-s + (−0.891 + 0.453i)3-s + (−0.404 − 1.95i)4-s + (0.968 + 2.01i)5-s + (0.297 − 1.38i)6-s + (2.67 − 2.67i)7-s + (2.50 + 1.30i)8-s + (0.587 − 0.809i)9-s + (−3.07 − 0.738i)10-s + (−1.87 − 2.57i)11-s + (1.24 + 1.56i)12-s + (5.65 − 0.895i)13-s + (0.544 + 5.32i)14-s + (−1.77 − 1.35i)15-s + (−3.67 + 1.58i)16-s + (−2.03 + 3.99i)17-s + ⋯ |
L(s) = 1 | + (−0.631 + 0.775i)2-s + (−0.514 + 0.262i)3-s + (−0.202 − 0.979i)4-s + (0.433 + 0.901i)5-s + (0.121 − 0.564i)6-s + (1.01 − 1.01i)7-s + (0.887 + 0.461i)8-s + (0.195 − 0.269i)9-s + (−0.972 − 0.233i)10-s + (−0.564 − 0.777i)11-s + (0.360 + 0.450i)12-s + (1.56 − 0.248i)13-s + (0.145 + 1.42i)14-s + (−0.459 − 0.350i)15-s + (−0.918 + 0.396i)16-s + (−0.494 + 0.969i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.481 - 0.876i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.481 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.833783 + 0.493035i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.833783 + 0.493035i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.893 - 1.09i)T \) |
| 3 | \( 1 + (0.891 - 0.453i)T \) |
| 5 | \( 1 + (-0.968 - 2.01i)T \) |
good | 7 | \( 1 + (-2.67 + 2.67i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.87 + 2.57i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-5.65 + 0.895i)T + (12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (2.03 - 3.99i)T + (-9.99 - 13.7i)T^{2} \) |
| 19 | \( 1 + (-0.869 - 2.67i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-5.81 - 0.921i)T + (21.8 + 7.10i)T^{2} \) |
| 29 | \( 1 + (-8.67 - 2.81i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.80 - 2.21i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.906 + 5.72i)T + (-35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (6.17 + 4.48i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-4.72 - 4.72i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.06 + 4.04i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (-1.95 - 3.83i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (5.25 + 3.81i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-3.90 + 2.84i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (-8.86 - 4.51i)T + (39.3 + 54.2i)T^{2} \) |
| 71 | \( 1 + (2.55 + 0.831i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.818 + 5.16i)T + (-69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (-1.62 + 4.99i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-0.853 + 1.67i)T + (-48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 + (6.51 + 8.96i)T + (-27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (4.14 - 2.11i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19581029218068934379651683641, −10.74267191928686639058668335974, −10.40856387004331916206319790596, −8.894387849792179794391710215016, −8.040636598887173460736614019493, −6.99831307795923407143887861581, −6.10431379380069017718686146878, −5.19276750655431284264483769233, −3.71728165176429032104993541858, −1.34991871673045066707643256709,
1.26324410916120045998547220169, 2.47529202889858733656677151121, 4.56289835008338865808023866392, 5.29379330682612349394955105465, 6.80671341346427303240829437135, 8.170658411370902268676807429066, 8.774230330922605559392546452856, 9.623638433920122083694825735550, 10.88489282819865195456729621814, 11.52561635370883365395710948523