L(s) = 1 | + 3-s − 7-s + 9-s − 13-s − 19-s − 21-s + 27-s − 31-s + 2·37-s − 39-s − 43-s − 57-s − 61-s − 63-s − 67-s + 2·73-s + 2·79-s + 81-s + 91-s − 93-s − 97-s + 2·103-s − 109-s + 2·111-s − 117-s + ⋯ |
L(s) = 1 | + 3-s − 7-s + 9-s − 13-s − 19-s − 21-s + 27-s − 31-s + 2·37-s − 39-s − 43-s − 57-s − 61-s − 63-s − 67-s + 2·73-s + 2·79-s + 81-s + 91-s − 93-s − 97-s + 2·103-s − 109-s + 2·111-s − 117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9379306138\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9379306138\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( ( 1 - T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )^{2} \) |
| 79 | \( ( 1 - T )^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28635711682333976456896360080, −10.86036084061802502300255538697, −9.813505761984259359602911118440, −9.299156206700353354343999261248, −8.179375125771904294432326961111, −7.22578870015588797157442167915, −6.25493360265909365346641648673, −4.65000897702590843147352066318, −3.44829529350115176093652141218, −2.30049063152907025395205531779,
2.30049063152907025395205531779, 3.44829529350115176093652141218, 4.65000897702590843147352066318, 6.25493360265909365346641648673, 7.22578870015588797157442167915, 8.179375125771904294432326961111, 9.299156206700353354343999261248, 9.813505761984259359602911118440, 10.86036084061802502300255538697, 12.28635711682333976456896360080