L(s) = 1 | − 5-s − 7-s − 6·13-s + 7·17-s + 8·19-s − 2·23-s − 4·25-s − 4·29-s + 2·31-s + 35-s + 9·37-s − 11·41-s + 7·43-s − 11·47-s + 49-s − 10·53-s + 9·59-s − 8·61-s + 6·65-s − 12·71-s − 14·73-s − 79-s − 9·83-s − 7·85-s − 14·89-s + 6·91-s − 8·95-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.377·7-s − 1.66·13-s + 1.69·17-s + 1.83·19-s − 0.417·23-s − 4/5·25-s − 0.742·29-s + 0.359·31-s + 0.169·35-s + 1.47·37-s − 1.71·41-s + 1.06·43-s − 1.60·47-s + 1/7·49-s − 1.37·53-s + 1.17·59-s − 1.02·61-s + 0.744·65-s − 1.42·71-s − 1.63·73-s − 0.112·79-s − 0.987·83-s − 0.759·85-s − 1.48·89-s + 0.628·91-s − 0.820·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 5 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 - 7 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 + 2 T + p T^{2} \) |
| 29 | \( 1 + 4 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 - 9 T + p T^{2} \) |
| 41 | \( 1 + 11 T + p T^{2} \) |
| 43 | \( 1 - 7 T + p T^{2} \) |
| 47 | \( 1 + 11 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 - 9 T + p T^{2} \) |
| 61 | \( 1 + 8 T + p T^{2} \) |
| 67 | \( 1 + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 + 9 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 - 4 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.057394536689059727049816407146, −7.62814961683791324343261012652, −7.09719034829237047645339493045, −5.92355118351395198688122554211, −5.31750687150200547436919808681, −4.46145248722790846311222725619, −3.40313836526304898756023679034, −2.81096596415057142508365378348, −1.42053801208435309098292606008, 0,
1.42053801208435309098292606008, 2.81096596415057142508365378348, 3.40313836526304898756023679034, 4.46145248722790846311222725619, 5.31750687150200547436919808681, 5.92355118351395198688122554211, 7.09719034829237047645339493045, 7.62814961683791324343261012652, 8.057394536689059727049816407146