L(s) = 1 | + (−0.724 − 1.21i)2-s + (−2.33 − 2.33i)3-s + (−0.949 + 1.76i)4-s + (0.751 − 0.751i)5-s + (−1.14 + 4.53i)6-s + 3.10i·7-s + (2.82 − 0.122i)8-s + 7.92i·9-s + (−1.45 − 0.368i)10-s + (−2.88 + 2.88i)11-s + (6.33 − 1.89i)12-s + (−1.54 − 1.54i)13-s + (3.77 − 2.25i)14-s − 3.51·15-s + (−2.19 − 3.34i)16-s + 3.53·17-s + ⋯ |
L(s) = 1 | + (−0.512 − 0.858i)2-s + (−1.34 − 1.34i)3-s + (−0.474 + 0.880i)4-s + (0.336 − 0.336i)5-s + (−0.467 + 1.85i)6-s + 1.17i·7-s + (0.999 − 0.0433i)8-s + 2.64i·9-s + (−0.461 − 0.116i)10-s + (−0.869 + 0.869i)11-s + (1.82 − 0.547i)12-s + (−0.427 − 0.427i)13-s + (1.00 − 0.601i)14-s − 0.907·15-s + (−0.549 − 0.835i)16-s + 0.857·17-s + ⋯ |
Λ(s)=(=(304s/2ΓC(s)L(s)(0.982−0.187i)Λ(2−s)
Λ(s)=(=(304s/2ΓC(s+1/2)L(s)(0.982−0.187i)Λ(1−s)
Degree: |
2 |
Conductor: |
304
= 24⋅19
|
Sign: |
0.982−0.187i
|
Analytic conductor: |
2.42745 |
Root analytic conductor: |
1.55802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ304(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 304, ( :1/2), 0.982−0.187i)
|
Particular Values
L(1) |
≈ |
0.378952+0.0358634i |
L(21) |
≈ |
0.378952+0.0358634i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.724+1.21i)T |
| 19 | 1+(0.707+0.707i)T |
good | 3 | 1+(2.33+2.33i)T+3iT2 |
| 5 | 1+(−0.751+0.751i)T−5iT2 |
| 7 | 1−3.10iT−7T2 |
| 11 | 1+(2.88−2.88i)T−11iT2 |
| 13 | 1+(1.54+1.54i)T+13iT2 |
| 17 | 1−3.53T+17T2 |
| 23 | 1−1.42iT−23T2 |
| 29 | 1+(−4.10−4.10i)T+29iT2 |
| 31 | 1+8.86T+31T2 |
| 37 | 1+(5.87−5.87i)T−37iT2 |
| 41 | 1+1.90iT−41T2 |
| 43 | 1+(−1.59+1.59i)T−43iT2 |
| 47 | 1−9.75T+47T2 |
| 53 | 1+(4.03−4.03i)T−53iT2 |
| 59 | 1+(7.96−7.96i)T−59iT2 |
| 61 | 1+(2.91+2.91i)T+61iT2 |
| 67 | 1+(−7.69−7.69i)T+67iT2 |
| 71 | 1−7.79iT−71T2 |
| 73 | 1+3.45iT−73T2 |
| 79 | 1+0.238T+79T2 |
| 83 | 1+(−6.68−6.68i)T+83iT2 |
| 89 | 1+0.325iT−89T2 |
| 97 | 1+9.17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.00325190874043249293397585514, −10.94783602074138175186747605472, −10.17316653828883723837794152551, −8.960431975751196956389095026547, −7.80990744489252518529724286073, −7.10529342225056890617717156970, −5.55665523350332250548651284668, −5.08639023503350074968099012887, −2.57783154535286735552438969150, −1.50325409218188584037416731360,
0.40436506226383474764134559117, 3.81213803040901964678484342592, 4.87466336927626937547616808882, 5.75660423867300569589325231038, 6.57611945173323588707534101196, 7.71009662279197562175683391778, 9.126398600702232739514827455780, 10.06630185629448258216462025274, 10.54749796693590551749957911518, 11.08995126689734953194949043078