L(s) = 1 | + (−0.724 − 1.21i)2-s + (−2.33 − 2.33i)3-s + (−0.949 + 1.76i)4-s + (0.751 − 0.751i)5-s + (−1.14 + 4.53i)6-s + 3.10i·7-s + (2.82 − 0.122i)8-s + 7.92i·9-s + (−1.45 − 0.368i)10-s + (−2.88 + 2.88i)11-s + (6.33 − 1.89i)12-s + (−1.54 − 1.54i)13-s + (3.77 − 2.25i)14-s − 3.51·15-s + (−2.19 − 3.34i)16-s + 3.53·17-s + ⋯ |
L(s) = 1 | + (−0.512 − 0.858i)2-s + (−1.34 − 1.34i)3-s + (−0.474 + 0.880i)4-s + (0.336 − 0.336i)5-s + (−0.467 + 1.85i)6-s + 1.17i·7-s + (0.999 − 0.0433i)8-s + 2.64i·9-s + (−0.461 − 0.116i)10-s + (−0.869 + 0.869i)11-s + (1.82 − 0.547i)12-s + (−0.427 − 0.427i)13-s + (1.00 − 0.601i)14-s − 0.907·15-s + (−0.549 − 0.835i)16-s + 0.857·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.378952 + 0.0358634i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.378952 + 0.0358634i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.724 + 1.21i)T \) |
| 19 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (2.33 + 2.33i)T + 3iT^{2} \) |
| 5 | \( 1 + (-0.751 + 0.751i)T - 5iT^{2} \) |
| 7 | \( 1 - 3.10iT - 7T^{2} \) |
| 11 | \( 1 + (2.88 - 2.88i)T - 11iT^{2} \) |
| 13 | \( 1 + (1.54 + 1.54i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.53T + 17T^{2} \) |
| 23 | \( 1 - 1.42iT - 23T^{2} \) |
| 29 | \( 1 + (-4.10 - 4.10i)T + 29iT^{2} \) |
| 31 | \( 1 + 8.86T + 31T^{2} \) |
| 37 | \( 1 + (5.87 - 5.87i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.90iT - 41T^{2} \) |
| 43 | \( 1 + (-1.59 + 1.59i)T - 43iT^{2} \) |
| 47 | \( 1 - 9.75T + 47T^{2} \) |
| 53 | \( 1 + (4.03 - 4.03i)T - 53iT^{2} \) |
| 59 | \( 1 + (7.96 - 7.96i)T - 59iT^{2} \) |
| 61 | \( 1 + (2.91 + 2.91i)T + 61iT^{2} \) |
| 67 | \( 1 + (-7.69 - 7.69i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.79iT - 71T^{2} \) |
| 73 | \( 1 + 3.45iT - 73T^{2} \) |
| 79 | \( 1 + 0.238T + 79T^{2} \) |
| 83 | \( 1 + (-6.68 - 6.68i)T + 83iT^{2} \) |
| 89 | \( 1 + 0.325iT - 89T^{2} \) |
| 97 | \( 1 + 9.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00325190874043249293397585514, −10.94783602074138175186747605472, −10.17316653828883723837794152551, −8.960431975751196956389095026547, −7.80990744489252518529724286073, −7.10529342225056890617717156970, −5.55665523350332250548651284668, −5.08639023503350074968099012887, −2.57783154535286735552438969150, −1.50325409218188584037416731360,
0.40436506226383474764134559117, 3.81213803040901964678484342592, 4.87466336927626937547616808882, 5.75660423867300569589325231038, 6.57611945173323588707534101196, 7.71009662279197562175683391778, 9.126398600702232739514827455780, 10.06630185629448258216462025274, 10.54749796693590551749957911518, 11.08995126689734953194949043078