L(s) = 1 | + (0.773 − 0.634i)2-s + (0.0750 − 0.181i)3-s + (0.195 − 0.980i)4-s + (−0.923 + 0.382i)5-s + (−0.0569 − 0.187i)6-s + (−0.471 − 0.881i)8-s + (0.679 + 0.679i)9-s + (−0.471 + 0.881i)10-s + (0.425 + 1.02i)11-s + (−0.162 − 0.108i)12-s + (0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 − 0.382i)16-s + (0.956 + 0.0942i)18-s + (0.923 + 0.382i)19-s + (0.195 + 0.980i)20-s + ⋯ |
L(s) = 1 | + (0.773 − 0.634i)2-s + (0.0750 − 0.181i)3-s + (0.195 − 0.980i)4-s + (−0.923 + 0.382i)5-s + (−0.0569 − 0.187i)6-s + (−0.471 − 0.881i)8-s + (0.679 + 0.679i)9-s + (−0.471 + 0.881i)10-s + (0.425 + 1.02i)11-s + (−0.162 − 0.108i)12-s + (0.536 + 0.222i)13-s + 0.196i·15-s + (−0.923 − 0.382i)16-s + (0.956 + 0.0942i)18-s + (0.923 + 0.382i)19-s + (0.195 + 0.980i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.773+0.634i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.773+0.634i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.773+0.634i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1709,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.773+0.634i)
|
Particular Values
L(21) |
≈ |
1.845993296 |
L(21) |
≈ |
1.845993296 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.773+0.634i)T |
| 5 | 1+(0.923−0.382i)T |
| 19 | 1+(−0.923−0.382i)T |
good | 3 | 1+(−0.0750+0.181i)T+(−0.707−0.707i)T2 |
| 7 | 1+iT2 |
| 11 | 1+(−0.425−1.02i)T+(−0.707+0.707i)T2 |
| 13 | 1+(−0.536−0.222i)T+(0.707+0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1−iT2 |
| 29 | 1+(0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−1.17+0.485i)T+(0.707−0.707i)T2 |
| 41 | 1−iT2 |
| 43 | 1+(0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(0.761+1.83i)T+(−0.707+0.707i)T2 |
| 59 | 1+(−0.707+0.707i)T2 |
| 61 | 1+(0.636−1.53i)T+(−0.707−0.707i)T2 |
| 67 | 1+(0.674−1.62i)T+(−0.707−0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1−iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.707−0.707i)T2 |
| 89 | 1+iT2 |
| 97 | 1−1.91T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.896127257752942838675040280903, −7.87030074479517008780602808164, −7.20246832666292095857423701645, −6.64948063028317014933802982216, −5.61519154424590565774996071348, −4.64156802202322436984657425789, −4.13420731376855595334571459664, −3.31777758352774097978827016384, −2.27121978707050885142336920998, −1.29713672214449542396498264868,
1.10350572633682419028023088950, 3.03071731232576440405789048946, 3.53835155394797628140168419133, 4.32578584826370271905905571975, 4.99876452004165507298958685874, 6.06489314151319316284276395283, 6.54584088578353128324416717769, 7.63734212463274084185445557611, 7.904210548537236384591311149227, 9.031342643543614067317985610241