L(s) = 1 | + (0.0980 − 0.995i)2-s + (0.485 − 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (−0.290 + 0.956i)8-s + (−0.431 − 0.431i)9-s + (−0.290 − 0.956i)10-s + (−0.636 − 1.53i)11-s + (−0.704 + 1.05i)12-s + (1.62 + 0.674i)13-s − 1.26i·15-s + (0.923 + 0.382i)16-s + (−0.471 + 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
L(s) = 1 | + (0.0980 − 0.995i)2-s + (0.485 − 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (−0.290 + 0.956i)8-s + (−0.431 − 0.431i)9-s + (−0.290 − 0.956i)10-s + (−0.636 − 1.53i)11-s + (−0.704 + 1.05i)12-s + (1.62 + 0.674i)13-s − 1.26i·15-s + (0.923 + 0.382i)16-s + (−0.471 + 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.995+0.0980i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.995+0.0980i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.995+0.0980i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1709,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), −0.995+0.0980i)
|
Particular Values
L(21) |
≈ |
1.638883080 |
L(21) |
≈ |
1.638883080 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0980+0.995i)T |
| 5 | 1+(−0.923+0.382i)T |
| 19 | 1+(0.923+0.382i)T |
good | 3 | 1+(−0.485+1.17i)T+(−0.707−0.707i)T2 |
| 7 | 1+iT2 |
| 11 | 1+(0.636+1.53i)T+(−0.707+0.707i)T2 |
| 13 | 1+(−1.62−0.674i)T+(0.707+0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1−iT2 |
| 29 | 1+(0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(1.83−0.761i)T+(0.707−0.707i)T2 |
| 41 | 1−iT2 |
| 43 | 1+(0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−0.591−1.42i)T+(−0.707+0.707i)T2 |
| 59 | 1+(−0.707+0.707i)T2 |
| 61 | 1+(0.425−1.02i)T+(−0.707−0.707i)T2 |
| 67 | 1+(0.732−1.76i)T+(−0.707−0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1−iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.707−0.707i)T2 |
| 89 | 1+iT2 |
| 97 | 1+0.942T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.742537601331100671832347364587, −8.233379943051855607107003182674, −6.97301145483287163186587506923, −6.10577288440349341980078570933, −5.63113177249924713286143902754, −4.51154903351324080162395158526, −3.43925647816447540417854639399, −2.62273278990330296652853729842, −1.74677338652528304268438416038, −1.00961141699652097689882050759,
1.85199848089373443947763673347, 3.18504112448888641683276024999, 3.87271361960550323291041956039, 4.75299912178049922290038530063, 5.39011406517105520144951906072, 6.21992341250932874928130780967, 6.90497701184722944253413711183, 7.83479409911977476370429828418, 8.617668365071651658573204656460, 9.178901576075466242790592578352