L(s) = 1 | + (−0.634 + 0.773i)2-s + (−0.761 − 1.83i)3-s + (−0.195 − 0.980i)4-s + (−0.923 − 0.382i)5-s + (1.90 + 0.577i)6-s + (0.881 + 0.471i)8-s + (−2.09 + 2.09i)9-s + (0.881 − 0.471i)10-s + (−0.425 + 1.02i)11-s + (−1.65 + 1.10i)12-s + (1.76 − 0.732i)13-s + 1.99i·15-s + (−0.923 + 0.382i)16-s + (−0.290 − 2.94i)18-s + (0.923 − 0.382i)19-s + (−0.195 + 0.980i)20-s + ⋯ |
L(s) = 1 | + (−0.634 + 0.773i)2-s + (−0.761 − 1.83i)3-s + (−0.195 − 0.980i)4-s + (−0.923 − 0.382i)5-s + (1.90 + 0.577i)6-s + (0.881 + 0.471i)8-s + (−2.09 + 2.09i)9-s + (0.881 − 0.471i)10-s + (−0.425 + 1.02i)11-s + (−1.65 + 1.10i)12-s + (1.76 − 0.732i)13-s + 1.99i·15-s + (−0.923 + 0.382i)16-s + (−0.290 − 2.94i)18-s + (0.923 − 0.382i)19-s + (−0.195 + 0.980i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.634+0.773i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.634+0.773i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.634+0.773i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(2469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.634+0.773i)
|
Particular Values
L(21) |
≈ |
0.5447589213 |
L(21) |
≈ |
0.5447589213 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.634−0.773i)T |
| 5 | 1+(0.923+0.382i)T |
| 19 | 1+(−0.923+0.382i)T |
good | 3 | 1+(0.761+1.83i)T+(−0.707+0.707i)T2 |
| 7 | 1−iT2 |
| 11 | 1+(0.425−1.02i)T+(−0.707−0.707i)T2 |
| 13 | 1+(−1.76+0.732i)T+(0.707−0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+(0.707−0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−1.42−0.591i)T+(0.707+0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(0.707+0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(0.0750−0.181i)T+(−0.707−0.707i)T2 |
| 59 | 1+(−0.707−0.707i)T2 |
| 61 | 1+(−0.636−1.53i)T+(−0.707+0.707i)T2 |
| 67 | 1+(0.360+0.871i)T+(−0.707+0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.707+0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1+0.580T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.348089022644211656480812814207, −7.87584265132694273093091371556, −7.40218567605663062476126298689, −6.72424995686711870912459551053, −5.95381281395542512151601277358, −5.36217698685093026391277251531, −4.47464756921752836221533359978, −2.85692441778528103186226559464, −1.50237810312977994272914693728, −0.807037847904901476122377726525,
0.78328784429321338777483151989, 2.89357736058999935334140994805, 3.69479320398835847888327842171, 3.88275861732806277778839331272, 4.89611203997275863954376491272, 5.86731992245014642298779141204, 6.62057110949919508909405200270, 7.919393956986898076986998417837, 8.569841839124860644529063425440, 9.095263969293070132263730391044