L(s) = 1 | + (0.471 + 0.881i)2-s + (−0.536 + 0.222i)3-s + (−0.555 + 0.831i)4-s + (−0.382 + 0.923i)5-s + (−0.448 − 0.368i)6-s + (−0.995 − 0.0980i)8-s + (−0.468 + 0.468i)9-s + (−0.995 + 0.0980i)10-s + (1.81 + 0.750i)11-s + (0.113 − 0.569i)12-s + (0.591 + 1.42i)13-s − 0.580i·15-s + (−0.382 − 0.923i)16-s + (−0.634 − 0.192i)18-s + (0.382 + 0.923i)19-s + (−0.555 − 0.831i)20-s + ⋯ |
L(s) = 1 | + (0.471 + 0.881i)2-s + (−0.536 + 0.222i)3-s + (−0.555 + 0.831i)4-s + (−0.382 + 0.923i)5-s + (−0.448 − 0.368i)6-s + (−0.995 − 0.0980i)8-s + (−0.468 + 0.468i)9-s + (−0.995 + 0.0980i)10-s + (1.81 + 0.750i)11-s + (0.113 − 0.569i)12-s + (0.591 + 1.42i)13-s − 0.580i·15-s + (−0.382 − 0.923i)16-s + (−0.634 − 0.192i)18-s + (0.382 + 0.923i)19-s + (−0.555 − 0.831i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.956+0.290i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.956+0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.956+0.290i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), −0.956+0.290i)
|
Particular Values
L(21) |
≈ |
1.131511972 |
L(21) |
≈ |
1.131511972 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.471−0.881i)T |
| 5 | 1+(0.382−0.923i)T |
| 19 | 1+(−0.382−0.923i)T |
good | 3 | 1+(0.536−0.222i)T+(0.707−0.707i)T2 |
| 7 | 1−iT2 |
| 11 | 1+(−1.81−0.750i)T+(0.707+0.707i)T2 |
| 13 | 1+(−0.591−1.42i)T+(−0.707+0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+(−0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−0.674+1.62i)T+(−0.707−0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(1.76+0.732i)T+(0.707+0.707i)T2 |
| 59 | 1+(0.707+0.707i)T2 |
| 61 | 1+(0.360−0.149i)T+(0.707−0.707i)T2 |
| 67 | 1+(0.181−0.0750i)T+(0.707−0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(0.707−0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1+1.26T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.266247214721606424274278011987, −8.424042360580877809345696405946, −7.55220497763297888215987764063, −6.90705156477841191964613050333, −6.27218789650653308565894848158, −5.79469626047336333373769777045, −4.48198817898417787544505424680, −4.13029898749270115987058702410, −3.26115164921092015052701762967, −1.88576112041199998146531585560,
0.74025334897137071275010847702, 1.32532505189147106411326753185, 3.07588300972470452744340532686, 3.59033774176315105235661203267, 4.56225085477445754843379378836, 5.33877021886169900103624505017, 6.07138773136718411965360601303, 6.59429381753107160082584367005, 7.976238573384390096896895022004, 8.766450460323700511248448641118