L(s) = 1 | + (−0.956 − 0.290i)2-s + (0.871 − 0.360i)3-s + (0.831 + 0.555i)4-s + (0.382 − 0.923i)5-s + (−0.938 + 0.0924i)6-s + (−0.634 − 0.773i)8-s + (−0.0785 + 0.0785i)9-s + (−0.634 + 0.773i)10-s + (0.360 + 0.149i)11-s + (0.924 + 0.183i)12-s + (−0.761 − 1.83i)13-s − 0.942i·15-s + (0.382 + 0.923i)16-s + (0.0980 − 0.0523i)18-s + (−0.382 − 0.923i)19-s + (0.831 − 0.555i)20-s + ⋯ |
L(s) = 1 | + (−0.956 − 0.290i)2-s + (0.871 − 0.360i)3-s + (0.831 + 0.555i)4-s + (0.382 − 0.923i)5-s + (−0.938 + 0.0924i)6-s + (−0.634 − 0.773i)8-s + (−0.0785 + 0.0785i)9-s + (−0.634 + 0.773i)10-s + (0.360 + 0.149i)11-s + (0.924 + 0.183i)12-s + (−0.761 − 1.83i)13-s − 0.942i·15-s + (0.382 + 0.923i)16-s + (0.0980 − 0.0523i)18-s + (−0.382 − 0.923i)19-s + (0.831 − 0.555i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.471+0.881i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.471+0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.471+0.881i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), −0.471+0.881i)
|
Particular Values
L(21) |
≈ |
1.010386763 |
L(21) |
≈ |
1.010386763 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.956+0.290i)T |
| 5 | 1+(−0.382+0.923i)T |
| 19 | 1+(0.382+0.923i)T |
good | 3 | 1+(−0.871+0.360i)T+(0.707−0.707i)T2 |
| 7 | 1−iT2 |
| 11 | 1+(−0.360−0.149i)T+(0.707+0.707i)T2 |
| 13 | 1+(0.761+1.83i)T+(−0.707+0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+(−0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−0.222+0.536i)T+(−0.707−0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(1.62+0.674i)T+(0.707+0.707i)T2 |
| 59 | 1+(0.707+0.707i)T2 |
| 61 | 1+(−1.81+0.750i)T+(0.707−0.707i)T2 |
| 67 | 1+(−1.42+0.591i)T+(0.707−0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(0.707−0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1−0.196T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.593463689758460033649765500812, −8.066726660139136723864060245774, −7.58167513855208584196958301240, −6.64906229916383202686920594385, −5.63982490462760850829577538526, −4.82569316982517014941965042666, −3.52509084678883565088301187815, −2.65964146097347154112870946976, −1.97702351905523736038437915001, −0.72568875372065699814535023896,
1.77073380192371602501402105405, 2.43291956416617847574705458521, 3.38808933503803121215862376225, 4.30908113610089628417178114359, 5.61331862493034753561104382441, 6.49035220494985368783869437941, 6.87692482626891387280822057976, 7.77125298373777711846309464390, 8.529182075997102467757902797723, 9.163980795859505787574810193008