L(s) = 1 | − 2-s + 4-s + 0.445·5-s + 0.911·7-s − 8-s − 0.445·10-s + 1.64·11-s − 0.911·14-s + 16-s − 1.50·17-s − 1.60·19-s + 0.445·20-s − 1.64·22-s − 7.38·23-s − 4.80·25-s + 0.911·28-s − 5.24·29-s + 7.34·31-s − 32-s + 1.50·34-s + 0.405·35-s − 2.98·37-s + 1.60·38-s − 0.445·40-s − 5.82·41-s + 2.98·43-s + 1.64·44-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.199·5-s + 0.344·7-s − 0.353·8-s − 0.140·10-s + 0.495·11-s − 0.243·14-s + 0.250·16-s − 0.365·17-s − 0.367·19-s + 0.0995·20-s − 0.350·22-s − 1.53·23-s − 0.960·25-s + 0.172·28-s − 0.974·29-s + 1.31·31-s − 0.176·32-s + 0.258·34-s + 0.0685·35-s − 0.491·37-s + 0.260·38-s − 0.0703·40-s − 0.909·41-s + 0.455·43-s + 0.247·44-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1−0.445T+5T2 |
| 7 | 1−0.911T+7T2 |
| 11 | 1−1.64T+11T2 |
| 17 | 1+1.50T+17T2 |
| 19 | 1+1.60T+19T2 |
| 23 | 1+7.38T+23T2 |
| 29 | 1+5.24T+29T2 |
| 31 | 1−7.34T+31T2 |
| 37 | 1+2.98T+37T2 |
| 41 | 1+5.82T+41T2 |
| 43 | 1−2.98T+43T2 |
| 47 | 1+7.87T+47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1−10.8T+59T2 |
| 61 | 1−6.98T+61T2 |
| 67 | 1+6.81T+67T2 |
| 71 | 1+6.05T+71T2 |
| 73 | 1−8.54T+73T2 |
| 79 | 1−6.73T+79T2 |
| 83 | 1+3.67T+83T2 |
| 89 | 1−16.5T+89T2 |
| 97 | 1+5.77T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.187350121472182160683098335503, −7.926017243502113929252447575812, −6.78860496745189447055150633712, −6.27875341334983626250156431973, −5.39885398308011029351786626128, −4.36405644664551466604964885112, −3.51571079692847603514504244347, −2.25911194757770128597110828222, −1.53922091242418604742048138197, 0,
1.53922091242418604742048138197, 2.25911194757770128597110828222, 3.51571079692847603514504244347, 4.36405644664551466604964885112, 5.39885398308011029351786626128, 6.27875341334983626250156431973, 6.78860496745189447055150633712, 7.926017243502113929252447575812, 8.187350121472182160683098335503