Properties

Label 2-3042-1.1-c1-0-48
Degree $2$
Conductor $3042$
Sign $-1$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 0.445·5-s + 0.911·7-s − 8-s − 0.445·10-s + 1.64·11-s − 0.911·14-s + 16-s − 1.50·17-s − 1.60·19-s + 0.445·20-s − 1.64·22-s − 7.38·23-s − 4.80·25-s + 0.911·28-s − 5.24·29-s + 7.34·31-s − 32-s + 1.50·34-s + 0.405·35-s − 2.98·37-s + 1.60·38-s − 0.445·40-s − 5.82·41-s + 2.98·43-s + 1.64·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.199·5-s + 0.344·7-s − 0.353·8-s − 0.140·10-s + 0.495·11-s − 0.243·14-s + 0.250·16-s − 0.365·17-s − 0.367·19-s + 0.0995·20-s − 0.350·22-s − 1.53·23-s − 0.960·25-s + 0.172·28-s − 0.974·29-s + 1.31·31-s − 0.176·32-s + 0.258·34-s + 0.0685·35-s − 0.491·37-s + 0.260·38-s − 0.0703·40-s − 0.909·41-s + 0.455·43-s + 0.247·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 0.445T + 5T^{2} \)
7 \( 1 - 0.911T + 7T^{2} \)
11 \( 1 - 1.64T + 11T^{2} \)
17 \( 1 + 1.50T + 17T^{2} \)
19 \( 1 + 1.60T + 19T^{2} \)
23 \( 1 + 7.38T + 23T^{2} \)
29 \( 1 + 5.24T + 29T^{2} \)
31 \( 1 - 7.34T + 31T^{2} \)
37 \( 1 + 2.98T + 37T^{2} \)
41 \( 1 + 5.82T + 41T^{2} \)
43 \( 1 - 2.98T + 43T^{2} \)
47 \( 1 + 7.87T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 - 6.98T + 61T^{2} \)
67 \( 1 + 6.81T + 67T^{2} \)
71 \( 1 + 6.05T + 71T^{2} \)
73 \( 1 - 8.54T + 73T^{2} \)
79 \( 1 - 6.73T + 79T^{2} \)
83 \( 1 + 3.67T + 83T^{2} \)
89 \( 1 - 16.5T + 89T^{2} \)
97 \( 1 + 5.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.187350121472182160683098335503, −7.926017243502113929252447575812, −6.78860496745189447055150633712, −6.27875341334983626250156431973, −5.39885398308011029351786626128, −4.36405644664551466604964885112, −3.51571079692847603514504244347, −2.25911194757770128597110828222, −1.53922091242418604742048138197, 0, 1.53922091242418604742048138197, 2.25911194757770128597110828222, 3.51571079692847603514504244347, 4.36405644664551466604964885112, 5.39885398308011029351786626128, 6.27875341334983626250156431973, 6.78860496745189447055150633712, 7.926017243502113929252447575812, 8.187350121472182160683098335503

Graph of the $Z$-function along the critical line