Properties

Label 2-3042-1.1-c1-0-50
Degree $2$
Conductor $3042$
Sign $-1$
Analytic cond. $24.2904$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4.04·5-s + 0.692·7-s + 8-s − 4.04·10-s + 4.85·11-s + 0.692·14-s + 16-s − 7.38·17-s − 1.78·19-s − 4.04·20-s + 4.85·22-s − 5.10·23-s + 11.3·25-s + 0.692·28-s + 3.34·29-s + 0.972·31-s + 32-s − 7.38·34-s − 2.80·35-s + 1.28·37-s − 1.78·38-s − 4.04·40-s − 1.50·41-s − 8.31·43-s + 4.85·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.81·5-s + 0.261·7-s + 0.353·8-s − 1.28·10-s + 1.46·11-s + 0.184·14-s + 0.250·16-s − 1.79·17-s − 0.408·19-s − 0.905·20-s + 1.03·22-s − 1.06·23-s + 2.27·25-s + 0.130·28-s + 0.621·29-s + 0.174·31-s + 0.176·32-s − 1.26·34-s − 0.473·35-s + 0.211·37-s − 0.288·38-s − 0.640·40-s − 0.235·41-s − 1.26·43-s + 0.731·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3042 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3042\)    =    \(2 \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(24.2904\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3042,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4.04T + 5T^{2} \)
7 \( 1 - 0.692T + 7T^{2} \)
11 \( 1 - 4.85T + 11T^{2} \)
17 \( 1 + 7.38T + 17T^{2} \)
19 \( 1 + 1.78T + 19T^{2} \)
23 \( 1 + 5.10T + 23T^{2} \)
29 \( 1 - 3.34T + 29T^{2} \)
31 \( 1 - 0.972T + 31T^{2} \)
37 \( 1 - 1.28T + 37T^{2} \)
41 \( 1 + 1.50T + 41T^{2} \)
43 \( 1 + 8.31T + 43T^{2} \)
47 \( 1 - 7.20T + 47T^{2} \)
53 \( 1 + 13.4T + 53T^{2} \)
59 \( 1 + 1.30T + 59T^{2} \)
61 \( 1 + 0.396T + 61T^{2} \)
67 \( 1 - 6.05T + 67T^{2} \)
71 \( 1 - 1.32T + 71T^{2} \)
73 \( 1 + 7.65T + 73T^{2} \)
79 \( 1 + 8.33T + 79T^{2} \)
83 \( 1 + 15.3T + 83T^{2} \)
89 \( 1 + 3.10T + 89T^{2} \)
97 \( 1 + 8.54T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.361857692340964722875491255891, −7.50719277773770057838819113870, −6.71177688853144678335199103810, −6.31265329841930805232147794356, −4.88771208837074146954305591760, −4.23204533733098603904573318429, −3.90681291207331497293349134746, −2.86887352156986316756235186105, −1.56759099700760226058139542948, 0, 1.56759099700760226058139542948, 2.86887352156986316756235186105, 3.90681291207331497293349134746, 4.23204533733098603904573318429, 4.88771208837074146954305591760, 6.31265329841930805232147794356, 6.71177688853144678335199103810, 7.50719277773770057838819113870, 8.361857692340964722875491255891

Graph of the $Z$-function along the critical line