L(s) = 1 | + 2-s + 4-s − 4.04·5-s + 0.692·7-s + 8-s − 4.04·10-s + 4.85·11-s + 0.692·14-s + 16-s − 7.38·17-s − 1.78·19-s − 4.04·20-s + 4.85·22-s − 5.10·23-s + 11.3·25-s + 0.692·28-s + 3.34·29-s + 0.972·31-s + 32-s − 7.38·34-s − 2.80·35-s + 1.28·37-s − 1.78·38-s − 4.04·40-s − 1.50·41-s − 8.31·43-s + 4.85·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.81·5-s + 0.261·7-s + 0.353·8-s − 1.28·10-s + 1.46·11-s + 0.184·14-s + 0.250·16-s − 1.79·17-s − 0.408·19-s − 0.905·20-s + 1.03·22-s − 1.06·23-s + 2.27·25-s + 0.130·28-s + 0.621·29-s + 0.174·31-s + 0.176·32-s − 1.26·34-s − 0.473·35-s + 0.211·37-s − 0.288·38-s − 0.640·40-s − 0.235·41-s − 1.26·43-s + 0.731·44-s + ⋯ |
Λ(s)=(=(3042s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3042s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1+4.04T+5T2 |
| 7 | 1−0.692T+7T2 |
| 11 | 1−4.85T+11T2 |
| 17 | 1+7.38T+17T2 |
| 19 | 1+1.78T+19T2 |
| 23 | 1+5.10T+23T2 |
| 29 | 1−3.34T+29T2 |
| 31 | 1−0.972T+31T2 |
| 37 | 1−1.28T+37T2 |
| 41 | 1+1.50T+41T2 |
| 43 | 1+8.31T+43T2 |
| 47 | 1−7.20T+47T2 |
| 53 | 1+13.4T+53T2 |
| 59 | 1+1.30T+59T2 |
| 61 | 1+0.396T+61T2 |
| 67 | 1−6.05T+67T2 |
| 71 | 1−1.32T+71T2 |
| 73 | 1+7.65T+73T2 |
| 79 | 1+8.33T+79T2 |
| 83 | 1+15.3T+83T2 |
| 89 | 1+3.10T+89T2 |
| 97 | 1+8.54T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.361857692340964722875491255891, −7.50719277773770057838819113870, −6.71177688853144678335199103810, −6.31265329841930805232147794356, −4.88771208837074146954305591760, −4.23204533733098603904573318429, −3.90681291207331497293349134746, −2.86887352156986316756235186105, −1.56759099700760226058139542948, 0,
1.56759099700760226058139542948, 2.86887352156986316756235186105, 3.90681291207331497293349134746, 4.23204533733098603904573318429, 4.88771208837074146954305591760, 6.31265329841930805232147794356, 6.71177688853144678335199103810, 7.50719277773770057838819113870, 8.361857692340964722875491255891