L(s) = 1 | + (0.707 − 0.707i)3-s + (−1 − i)5-s − 1.41i·7-s − 1.00i·9-s − 1.41·15-s + (−1.00 − 1.00i)21-s + i·25-s + (−0.707 − 0.707i)27-s + (−1 + i)29-s + 1.41·31-s + (−1.41 + 1.41i)35-s + (−1.00 + 1.00i)45-s − 1.00·49-s + (−1 − i)53-s + (1.41 + 1.41i)59-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (−1 − i)5-s − 1.41i·7-s − 1.00i·9-s − 1.41·15-s + (−1.00 − 1.00i)21-s + i·25-s + (−0.707 − 0.707i)27-s + (−1 + i)29-s + 1.41·31-s + (−1.41 + 1.41i)35-s + (−1.00 + 1.00i)45-s − 1.00·49-s + (−1 − i)53-s + (1.41 + 1.41i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.150012530\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.150012530\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
good | 5 | \( 1 + (1 + i)T + iT^{2} \) |
| 7 | \( 1 + 1.41iT - T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (1 - i)T - iT^{2} \) |
| 31 | \( 1 - 1.41T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (1 + i)T + iT^{2} \) |
| 59 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 1.41T + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.266606216722696494091143372944, −7.983199377571037643222278914115, −7.15318769952046467360592223629, −6.69021633211812480094545910675, −5.41189634486789386131586654483, −4.36507057913104450224794276878, −3.91115950058971451499093353186, −3.01767214057854747039064491074, −1.56212013498722695407897813421, −0.66157097547778919428194430940,
2.17195891256597214698464822127, 2.83999079541757872408194673121, 3.58028062500165148710282559752, 4.39712775542095332692234536015, 5.32714922457050951722572177407, 6.19135945836278037402085234544, 7.09118609714977698830785941425, 8.034731651387057405663089212255, 8.273109861747792222942724046039, 9.280963923865094030358655390498