L(s) = 1 | + (0.153 + 0.471i)3-s + (−0.489 − 0.355i)5-s + (0.309 − 0.951i)7-s + (2.22 − 1.61i)9-s + (3.31 + 0.168i)11-s + (0.540 − 0.392i)13-s + (0.0928 − 0.285i)15-s + (4.47 + 3.25i)17-s + (0.917 + 2.82i)19-s + 0.495·21-s − 2.32·23-s + (−1.43 − 4.40i)25-s + (2.30 + 1.67i)27-s + (1.81 − 5.58i)29-s + (−5.67 + 4.12i)31-s + ⋯ |
L(s) = 1 | + (0.0884 + 0.272i)3-s + (−0.219 − 0.159i)5-s + (0.116 − 0.359i)7-s + (0.742 − 0.539i)9-s + (0.998 + 0.0507i)11-s + (0.149 − 0.108i)13-s + (0.0239 − 0.0737i)15-s + (1.08 + 0.789i)17-s + (0.210 + 0.647i)19-s + 0.108·21-s − 0.485·23-s + (−0.286 − 0.881i)25-s + (0.444 + 0.322i)27-s + (0.337 − 1.03i)29-s + (−1.01 + 0.740i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0744i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43730 - 0.0536051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43730 - 0.0536051i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-3.31 - 0.168i)T \) |
good | 3 | \( 1 + (-0.153 - 0.471i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (0.489 + 0.355i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-0.540 + 0.392i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.47 - 3.25i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.917 - 2.82i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.32T + 23T^{2} \) |
| 29 | \( 1 + (-1.81 + 5.58i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (5.67 - 4.12i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.54 - 7.82i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.71 + 11.4i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.96T + 43T^{2} \) |
| 47 | \( 1 + (0.388 + 1.19i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-4.12 + 2.99i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (3.59 - 11.0i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (5.14 + 3.74i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 13.4T + 67T^{2} \) |
| 71 | \( 1 + (3.35 + 2.43i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.80 - 8.62i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (5.81 - 4.22i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.26 - 4.55i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 2.56T + 89T^{2} \) |
| 97 | \( 1 + (2.93 - 2.13i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03930848833587876569151979387, −10.50804252977808268075258139421, −9.961427246368792262223000642348, −8.886193409816260238689499193186, −7.901013567660974274344023615994, −6.84030304788910483689422160802, −5.77507529086904580962004192551, −4.26495452440634767132339053738, −3.58638234501643186448300408490, −1.40857313914900957958651025578,
1.58360176413345681879884343814, 3.24942325025063202547615689966, 4.57131194574423046775001866353, 5.77862065628269372905253873797, 7.05945790105923532913030667007, 7.68963085644460660571152101325, 8.964068863587266725839658667964, 9.729057714540604748201948467280, 10.91059045336892143723836771466, 11.73677076950842829577332495147