L(s) = 1 | + (0.153 + 0.471i)3-s + (−0.489 − 0.355i)5-s + (0.309 − 0.951i)7-s + (2.22 − 1.61i)9-s + (3.31 + 0.168i)11-s + (0.540 − 0.392i)13-s + (0.0928 − 0.285i)15-s + (4.47 + 3.25i)17-s + (0.917 + 2.82i)19-s + 0.495·21-s − 2.32·23-s + (−1.43 − 4.40i)25-s + (2.30 + 1.67i)27-s + (1.81 − 5.58i)29-s + (−5.67 + 4.12i)31-s + ⋯ |
L(s) = 1 | + (0.0884 + 0.272i)3-s + (−0.219 − 0.159i)5-s + (0.116 − 0.359i)7-s + (0.742 − 0.539i)9-s + (0.998 + 0.0507i)11-s + (0.149 − 0.108i)13-s + (0.0239 − 0.0737i)15-s + (1.08 + 0.789i)17-s + (0.210 + 0.647i)19-s + 0.108·21-s − 0.485·23-s + (−0.286 − 0.881i)25-s + (0.444 + 0.322i)27-s + (0.337 − 1.03i)29-s + (−1.01 + 0.740i)31-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(0.997+0.0744i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(0.997+0.0744i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
0.997+0.0744i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), 0.997+0.0744i)
|
Particular Values
L(1) |
≈ |
1.43730−0.0536051i |
L(21) |
≈ |
1.43730−0.0536051i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.309+0.951i)T |
| 11 | 1+(−3.31−0.168i)T |
good | 3 | 1+(−0.153−0.471i)T+(−2.42+1.76i)T2 |
| 5 | 1+(0.489+0.355i)T+(1.54+4.75i)T2 |
| 13 | 1+(−0.540+0.392i)T+(4.01−12.3i)T2 |
| 17 | 1+(−4.47−3.25i)T+(5.25+16.1i)T2 |
| 19 | 1+(−0.917−2.82i)T+(−15.3+11.1i)T2 |
| 23 | 1+2.32T+23T2 |
| 29 | 1+(−1.81+5.58i)T+(−23.4−17.0i)T2 |
| 31 | 1+(5.67−4.12i)T+(9.57−29.4i)T2 |
| 37 | 1+(2.54−7.82i)T+(−29.9−21.7i)T2 |
| 41 | 1+(3.71+11.4i)T+(−33.1+24.0i)T2 |
| 43 | 1−2.96T+43T2 |
| 47 | 1+(0.388+1.19i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−4.12+2.99i)T+(16.3−50.4i)T2 |
| 59 | 1+(3.59−11.0i)T+(−47.7−34.6i)T2 |
| 61 | 1+(5.14+3.74i)T+(18.8+58.0i)T2 |
| 67 | 1+13.4T+67T2 |
| 71 | 1+(3.35+2.43i)T+(21.9+67.5i)T2 |
| 73 | 1+(2.80−8.62i)T+(−59.0−42.9i)T2 |
| 79 | 1+(5.81−4.22i)T+(24.4−75.1i)T2 |
| 83 | 1+(−6.26−4.55i)T+(25.6+78.9i)T2 |
| 89 | 1+2.56T+89T2 |
| 97 | 1+(2.93−2.13i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03930848833587876569151979387, −10.50804252977808268075258139421, −9.961427246368792262223000642348, −8.886193409816260238689499193186, −7.901013567660974274344023615994, −6.84030304788910483689422160802, −5.77507529086904580962004192551, −4.26495452440634767132339053738, −3.58638234501643186448300408490, −1.40857313914900957958651025578,
1.58360176413345681879884343814, 3.24942325025063202547615689966, 4.57131194574423046775001866353, 5.77862065628269372905253873797, 7.05945790105923532913030667007, 7.68963085644460660571152101325, 8.964068863587266725839658667964, 9.729057714540604748201948467280, 10.91059045336892143723836771466, 11.73677076950842829577332495147