L(s) = 1 | + (−0.647 − 1.25i)2-s + (−0.656 − 1.13i)3-s + (−1.16 + 1.62i)4-s + (0.985 + 0.569i)5-s + (−1.00 + 1.56i)6-s + (2.64 + 0.0442i)7-s + (2.79 + 0.407i)8-s + (0.639 − 1.10i)9-s + (0.0776 − 1.60i)10-s + (0.866 − 0.5i)11-s + (2.61 + 0.252i)12-s − 0.913i·13-s + (−1.65 − 3.35i)14-s − 1.49i·15-s + (−1.29 − 3.78i)16-s + (−2.27 + 1.31i)17-s + ⋯ |
L(s) = 1 | + (−0.457 − 0.889i)2-s + (−0.378 − 0.656i)3-s + (−0.581 + 0.813i)4-s + (0.440 + 0.254i)5-s + (−0.409 + 0.637i)6-s + (0.999 + 0.0167i)7-s + (0.989 + 0.144i)8-s + (0.213 − 0.368i)9-s + (0.0245 − 0.508i)10-s + (0.261 − 0.150i)11-s + (0.754 + 0.0729i)12-s − 0.253i·13-s + (−0.442 − 0.896i)14-s − 0.385i·15-s + (−0.324 − 0.945i)16-s + (−0.550 + 0.317i)17-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(−0.237+0.971i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(−0.237+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
−0.237+0.971i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(243,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), −0.237+0.971i)
|
Particular Values
L(1) |
≈ |
0.647680−0.825268i |
L(21) |
≈ |
0.647680−0.825268i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.647+1.25i)T |
| 7 | 1+(−2.64−0.0442i)T |
| 11 | 1+(−0.866+0.5i)T |
good | 3 | 1+(0.656+1.13i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.985−0.569i)T+(2.5+4.33i)T2 |
| 13 | 1+0.913iT−13T2 |
| 17 | 1+(2.27−1.31i)T+(8.5−14.7i)T2 |
| 19 | 1+(−2.21+3.83i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.84−1.64i)T+(11.5+19.9i)T2 |
| 29 | 1+1.58T+29T2 |
| 31 | 1+(−1.70−2.95i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−3.33+5.77i)T+(−18.5−32.0i)T2 |
| 41 | 1−1.54iT−41T2 |
| 43 | 1+2.10iT−43T2 |
| 47 | 1+(−1.31+2.26i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.812−1.40i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.816−1.41i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.716+0.413i)T+(30.5+52.8i)T2 |
| 67 | 1+(−7.82+4.51i)T+(33.5−58.0i)T2 |
| 71 | 1−12.4iT−71T2 |
| 73 | 1+(9.92−5.72i)T+(36.5−63.2i)T2 |
| 79 | 1+(−8.05−4.64i)T+(39.5+68.4i)T2 |
| 83 | 1+15.4T+83T2 |
| 89 | 1+(−14.0−8.13i)T+(44.5+77.0i)T2 |
| 97 | 1−11.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.40902890592369240389462993199, −10.72701297647251105076388555120, −9.616900328520744588764599390689, −8.732298027880279009990275941674, −7.66258835868637713809269187496, −6.73419291743273993673403494103, −5.34106902467716146568087316497, −4.02165994996380940765854771292, −2.40544280688134646710649393864, −1.11078676333822495356327542555,
1.65145875527739229137556352988, 4.29635646609772477604239495251, 5.04552391379963822253811173291, 5.93358763161503586233661472945, 7.24928151668202434314886768896, 8.128377067565997527919309055392, 9.195337613636126964062936116749, 9.925608840015060366410982622569, 10.84437462833156606669799796741, 11.64654199113882629234101928875