Properties

Label 2-308-308.307-c0-0-1
Degree $2$
Conductor $308$
Sign $1$
Analytic cond. $0.153712$
Root an. cond. $0.392061$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 9-s − 11-s − 14-s + 16-s − 18-s − 22-s + 25-s − 28-s + 32-s − 36-s − 2·37-s + 2·43-s − 44-s + 49-s + 50-s − 2·53-s − 56-s + 63-s + 64-s − 72-s − 2·74-s + 77-s + 2·79-s + ⋯
L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 9-s − 11-s − 14-s + 16-s − 18-s − 22-s + 25-s − 28-s + 32-s − 36-s − 2·37-s + 2·43-s − 44-s + 49-s + 50-s − 2·53-s − 56-s + 63-s + 64-s − 72-s − 2·74-s + 77-s + 2·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308\)    =    \(2^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(0.153712\)
Root analytic conductor: \(0.392061\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{308} (307, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 308,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.194444370\)
\(L(\frac12)\) \(\approx\) \(1.194444370\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
good3 \( 1 + T^{2} \)
5 \( ( 1 - T )( 1 + T ) \)
13 \( 1 + T^{2} \)
17 \( 1 + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T^{2} \)
37 \( ( 1 + T )^{2} \)
41 \( 1 + T^{2} \)
43 \( ( 1 - T )^{2} \)
47 \( 1 + T^{2} \)
53 \( ( 1 + T )^{2} \)
59 \( 1 + T^{2} \)
61 \( 1 + T^{2} \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( 1 + T^{2} \)
79 \( ( 1 - T )^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.22444025991043263408956350708, −11.02761844551828325954706001299, −10.41138502805636840024843453249, −9.125716297240622943033830407001, −7.919956933541530537490995495877, −6.82003577140905773126479937248, −5.87497498597523816414932977436, −4.98255767812676813049156880337, −3.46742102224712460117571879696, −2.58191647953742011947022981592, 2.58191647953742011947022981592, 3.46742102224712460117571879696, 4.98255767812676813049156880337, 5.87497498597523816414932977436, 6.82003577140905773126479937248, 7.919956933541530537490995495877, 9.125716297240622943033830407001, 10.41138502805636840024843453249, 11.02761844551828325954706001299, 12.22444025991043263408956350708

Graph of the $Z$-function along the critical line