L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 9-s − 11-s − 14-s + 16-s − 18-s − 22-s + 25-s − 28-s + 32-s − 36-s − 2·37-s + 2·43-s − 44-s + 49-s + 50-s − 2·53-s − 56-s + 63-s + 64-s − 72-s − 2·74-s + 77-s + 2·79-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 7-s + 8-s − 9-s − 11-s − 14-s + 16-s − 18-s − 22-s + 25-s − 28-s + 32-s − 36-s − 2·37-s + 2·43-s − 44-s + 49-s + 50-s − 2·53-s − 56-s + 63-s + 64-s − 72-s − 2·74-s + 77-s + 2·79-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(308s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
1
|
Analytic conductor: |
0.153712 |
Root analytic conductor: |
0.392061 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ308(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.194444370 |
L(21) |
≈ |
1.194444370 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 7 | 1+T |
| 11 | 1+T |
good | 3 | 1+T2 |
| 5 | (1−T)(1+T) |
| 13 | 1+T2 |
| 17 | 1+T2 |
| 19 | (1−T)(1+T) |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | 1+T2 |
| 37 | (1+T)2 |
| 41 | 1+T2 |
| 43 | (1−T)2 |
| 47 | 1+T2 |
| 53 | (1+T)2 |
| 59 | 1+T2 |
| 61 | 1+T2 |
| 67 | (1−T)(1+T) |
| 71 | (1−T)(1+T) |
| 73 | 1+T2 |
| 79 | (1−T)2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.22444025991043263408956350708, −11.02761844551828325954706001299, −10.41138502805636840024843453249, −9.125716297240622943033830407001, −7.919956933541530537490995495877, −6.82003577140905773126479937248, −5.87497498597523816414932977436, −4.98255767812676813049156880337, −3.46742102224712460117571879696, −2.58191647953742011947022981592,
2.58191647953742011947022981592, 3.46742102224712460117571879696, 4.98255767812676813049156880337, 5.87497498597523816414932977436, 6.82003577140905773126479937248, 7.919956933541530537490995495877, 9.125716297240622943033830407001, 10.41138502805636840024843453249, 11.02761844551828325954706001299, 12.22444025991043263408956350708