L(s) = 1 | + (−0.0341 + 0.324i)3-s + (2.36 + 2.62i)5-s + (−0.532 − 2.59i)7-s + (2.83 + 0.601i)9-s + (−3.06 + 1.27i)11-s + (0.771 + 2.37i)13-s + (−0.933 + 0.678i)15-s + (−1.54 + 0.327i)17-s + (6.65 − 2.96i)19-s + (0.859 − 0.0846i)21-s + (−3.62 + 6.28i)23-s + (−0.782 + 7.44i)25-s + (−0.594 + 1.83i)27-s + (3.15 − 2.29i)29-s + (3.34 − 3.71i)31-s + ⋯ |
L(s) = 1 | + (−0.0197 + 0.187i)3-s + (1.05 + 1.17i)5-s + (−0.201 − 0.979i)7-s + (0.943 + 0.200i)9-s + (−0.923 + 0.383i)11-s + (0.213 + 0.658i)13-s + (−0.241 + 0.175i)15-s + (−0.373 + 0.0794i)17-s + (1.52 − 0.679i)19-s + (0.187 − 0.0184i)21-s + (−0.756 + 1.31i)23-s + (−0.156 + 1.48i)25-s + (−0.114 + 0.352i)27-s + (0.585 − 0.425i)29-s + (0.600 − 0.667i)31-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(0.752−0.658i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(0.752−0.658i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
0.752−0.658i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), 0.752−0.658i)
|
Particular Values
L(1) |
≈ |
1.42590+0.535522i |
L(21) |
≈ |
1.42590+0.535522i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.532+2.59i)T |
| 11 | 1+(3.06−1.27i)T |
good | 3 | 1+(0.0341−0.324i)T+(−2.93−0.623i)T2 |
| 5 | 1+(−2.36−2.62i)T+(−0.522+4.97i)T2 |
| 13 | 1+(−0.771−2.37i)T+(−10.5+7.64i)T2 |
| 17 | 1+(1.54−0.327i)T+(15.5−6.91i)T2 |
| 19 | 1+(−6.65+2.96i)T+(12.7−14.1i)T2 |
| 23 | 1+(3.62−6.28i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.15+2.29i)T+(8.96−27.5i)T2 |
| 31 | 1+(−3.34+3.71i)T+(−3.24−30.8i)T2 |
| 37 | 1+(0.638+6.07i)T+(−36.1+7.69i)T2 |
| 41 | 1+(8.07+5.86i)T+(12.6+38.9i)T2 |
| 43 | 1−2.83T+43T2 |
| 47 | 1+(1.10−0.492i)T+(31.4−34.9i)T2 |
| 53 | 1+(1.12−1.25i)T+(−5.54−52.7i)T2 |
| 59 | 1+(4.70+2.09i)T+(39.4+43.8i)T2 |
| 61 | 1+(6.27+6.96i)T+(−6.37+60.6i)T2 |
| 67 | 1+(3.03+5.26i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.205+0.631i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−2.52−1.12i)T+(48.8+54.2i)T2 |
| 79 | 1+(15.3+3.27i)T+(72.1+32.1i)T2 |
| 83 | 1+(−1.50+4.61i)T+(−67.1−48.7i)T2 |
| 89 | 1+(−5.86+10.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(5.58+17.1i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55985813569956075404833473004, −10.62703193633571565521440823446, −10.01086196329682239724251466486, −9.450865127366265559182441878342, −7.56205945423772668562155904764, −7.08768290436697893998565952303, −5.99438115313032909177491049615, −4.68994648527795703518702040753, −3.34974725248926942998628244288, −1.92101196822121375080855296927,
1.35953071374729915641894913528, 2.85423440748634763554171795830, 4.77947954841924533144085394307, 5.55326153181507717149893638498, 6.46472504492246461335696172230, 8.028986089780057601547154902098, 8.734904814104571410116851676012, 9.795713490592039400931065431726, 10.31508482217885811202487501526, 11.96452729082446397941474354893