L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)10-s + (1.11 + 0.363i)13-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)17-s + 0.999i·20-s + (−0.309 − 0.951i)25-s + 1.17·26-s + (−1.53 + 1.11i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−1.80 − 0.587i)37-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)10-s + (1.11 + 0.363i)13-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)17-s + 0.999i·20-s + (−0.309 − 0.951i)25-s + 1.17·26-s + (−1.53 + 1.11i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−1.80 − 0.587i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.644352888\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.644352888\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.587 - 0.809i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59986900329159309509521787607, −9.699461215020015615865776926570, −8.550558271742737435183097818157, −7.42482082393729436219161993207, −6.79123530658515058052965022890, −5.90737279993285978386263072697, −4.89737206448011356629001860126, −3.72204483274331558858568224127, −3.21130789358404287854821928286, −1.76848825607911662501926024035,
1.71336975960622645738288534676, 3.41174887955700708217934102415, 4.00011315318874437935089740500, 5.12256344707492867425207956684, 5.81573700153551513224530902272, 6.81811971233623963742477683231, 7.895648210737973335928155014108, 8.333636266970893915357082929706, 9.375643454328889216790574393391, 10.66771589065815058168348317787