Properties

Label 2-30e2-100.19-c0-0-1
Degree 22
Conductor 900900
Sign 0.968+0.248i0.968 + 0.248i
Analytic cond. 0.4491580.449158
Root an. cond. 0.6701920.670192
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)10-s + (1.11 + 0.363i)13-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)17-s + 0.999i·20-s + (−0.309 − 0.951i)25-s + 1.17·26-s + (−1.53 + 1.11i)29-s i·32-s + (0.190 − 0.587i)34-s + (−1.80 − 0.587i)37-s + ⋯
L(s)  = 1  + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)10-s + (1.11 + 0.363i)13-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)17-s + 0.999i·20-s + (−0.309 − 0.951i)25-s + 1.17·26-s + (−1.53 + 1.11i)29-s i·32-s + (0.190 − 0.587i)34-s + (−1.80 − 0.587i)37-s + ⋯

Functional equation

Λ(s)=(900s/2ΓC(s)L(s)=((0.968+0.248i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(900s/2ΓC(s)L(s)=((0.968+0.248i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 900900    =    2232522^{2} \cdot 3^{2} \cdot 5^{2}
Sign: 0.968+0.248i0.968 + 0.248i
Analytic conductor: 0.4491580.449158
Root analytic conductor: 0.6701920.670192
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ900(19,)\chi_{900} (19, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 900, ( :0), 0.968+0.248i)(2,\ 900,\ (\ :0),\ 0.968 + 0.248i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6443528881.644352888
L(12)L(\frac12) \approx 1.6443528881.644352888
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
3 1 1
5 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
good7 1+T2 1 + T^{2}
11 1+(0.8090.587i)T2 1 + (0.809 - 0.587i)T^{2}
13 1+(1.110.363i)T+(0.809+0.587i)T2 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2}
17 1+(0.363+0.5i)T+(0.3090.951i)T2 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2}
19 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
23 1+(0.809+0.587i)T2 1 + (-0.809 + 0.587i)T^{2}
29 1+(1.531.11i)T+(0.3090.951i)T2 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2}
31 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
37 1+(1.80+0.587i)T+(0.809+0.587i)T2 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2}
41 1+(0.3631.11i)T+(0.8090.587i)T2 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2}
43 1+T2 1 + T^{2}
47 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
53 1+(0.951+1.30i)T+(0.309+0.951i)T2 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2}
59 1+(0.809+0.587i)T2 1 + (0.809 + 0.587i)T^{2}
61 1+(0.51.53i)T+(0.809+0.587i)T2 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2}
67 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
71 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
73 1+(1.11+0.363i)T+(0.8090.587i)T2 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2}
79 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
83 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
89 1+(0.587+1.80i)T+(0.809+0.587i)T2 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2}
97 1+(1.11+1.53i)T+(0.309+0.951i)T2 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.59986900329159309509521787607, −9.699461215020015615865776926570, −8.550558271742737435183097818157, −7.42482082393729436219161993207, −6.79123530658515058052965022890, −5.90737279993285978386263072697, −4.89737206448011356629001860126, −3.72204483274331558858568224127, −3.21130789358404287854821928286, −1.76848825607911662501926024035, 1.71336975960622645738288534676, 3.41174887955700708217934102415, 4.00011315318874437935089740500, 5.12256344707492867425207956684, 5.81573700153551513224530902272, 6.81811971233623963742477683231, 7.895648210737973335928155014108, 8.333636266970893915357082929706, 9.375643454328889216790574393391, 10.66771589065815058168348317787

Graph of the ZZ-function along the critical line