L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)10-s + (1.11 + 0.363i)13-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)17-s + 0.999i·20-s + (−0.309 − 0.951i)25-s + 1.17·26-s + (−1.53 + 1.11i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−1.80 − 0.587i)37-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)10-s + (1.11 + 0.363i)13-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)17-s + 0.999i·20-s + (−0.309 − 0.951i)25-s + 1.17·26-s + (−1.53 + 1.11i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−1.80 − 0.587i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.968+0.248i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.968+0.248i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.968+0.248i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.968+0.248i)
|
Particular Values
L(21) |
≈ |
1.644352888 |
L(21) |
≈ |
1.644352888 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.951+0.309i)T |
| 3 | 1 |
| 5 | 1+(0.587−0.809i)T |
good | 7 | 1+T2 |
| 11 | 1+(0.809−0.587i)T2 |
| 13 | 1+(−1.11−0.363i)T+(0.809+0.587i)T2 |
| 17 | 1+(−0.363+0.5i)T+(−0.309−0.951i)T2 |
| 19 | 1+(−0.309−0.951i)T2 |
| 23 | 1+(−0.809+0.587i)T2 |
| 29 | 1+(1.53−1.11i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(1.80+0.587i)T+(0.809+0.587i)T2 |
| 41 | 1+(0.363−1.11i)T+(−0.809−0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(0.309−0.951i)T2 |
| 53 | 1+(0.951+1.30i)T+(−0.309+0.951i)T2 |
| 59 | 1+(0.809+0.587i)T2 |
| 61 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 67 | 1+(0.309+0.951i)T2 |
| 71 | 1+(−0.309+0.951i)T2 |
| 73 | 1+(−1.11+0.363i)T+(0.809−0.587i)T2 |
| 79 | 1+(−0.309+0.951i)T2 |
| 83 | 1+(0.309+0.951i)T2 |
| 89 | 1+(0.587+1.80i)T+(−0.809+0.587i)T2 |
| 97 | 1+(1.11+1.53i)T+(−0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59986900329159309509521787607, −9.699461215020015615865776926570, −8.550558271742737435183097818157, −7.42482082393729436219161993207, −6.79123530658515058052965022890, −5.90737279993285978386263072697, −4.89737206448011356629001860126, −3.72204483274331558858568224127, −3.21130789358404287854821928286, −1.76848825607911662501926024035,
1.71336975960622645738288534676, 3.41174887955700708217934102415, 4.00011315318874437935089740500, 5.12256344707492867425207956684, 5.81573700153551513224530902272, 6.81811971233623963742477683231, 7.895648210737973335928155014108, 8.333636266970893915357082929706, 9.375643454328889216790574393391, 10.66771589065815058168348317787