L(s) = 1 | + (−1.24 + 0.678i)2-s + (1.08 − 1.68i)4-s + (0.872 − 2.05i)5-s + (3.13 + 3.13i)7-s + (−0.199 + 2.82i)8-s + (0.312 + 3.14i)10-s + (3.28 + 4.52i)11-s + (0.499 + 3.15i)13-s + (−6.00 − 1.76i)14-s + (−1.66 − 3.63i)16-s + (−2.24 − 1.14i)17-s + (−0.732 − 2.25i)19-s + (−2.52 − 3.69i)20-s + (−7.14 − 3.38i)22-s + (−1.33 + 8.40i)23-s + ⋯ |
L(s) = 1 | + (−0.877 + 0.479i)2-s + (0.540 − 0.841i)4-s + (0.390 − 0.920i)5-s + (1.18 + 1.18i)7-s + (−0.0704 + 0.997i)8-s + (0.0989 + 0.995i)10-s + (0.990 + 1.36i)11-s + (0.138 + 0.875i)13-s + (−1.60 − 0.471i)14-s + (−0.416 − 0.909i)16-s + (−0.543 − 0.276i)17-s + (−0.167 − 0.516i)19-s + (−0.563 − 0.825i)20-s + (−1.52 − 0.721i)22-s + (−0.277 + 1.75i)23-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.299−0.954i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(0.299−0.954i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.299−0.954i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(523,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :1/2), 0.299−0.954i)
|
Particular Values
L(1) |
≈ |
1.01586+0.745606i |
L(21) |
≈ |
1.01586+0.745606i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.24−0.678i)T |
| 3 | 1 |
| 5 | 1+(−0.872+2.05i)T |
good | 7 | 1+(−3.13−3.13i)T+7iT2 |
| 11 | 1+(−3.28−4.52i)T+(−3.39+10.4i)T2 |
| 13 | 1+(−0.499−3.15i)T+(−12.3+4.01i)T2 |
| 17 | 1+(2.24+1.14i)T+(9.99+13.7i)T2 |
| 19 | 1+(0.732+2.25i)T+(−15.3+11.1i)T2 |
| 23 | 1+(1.33−8.40i)T+(−21.8−7.10i)T2 |
| 29 | 1+(3.85+1.25i)T+(23.4+17.0i)T2 |
| 31 | 1+(2.06−0.670i)T+(25.0−18.2i)T2 |
| 37 | 1+(3.19−0.506i)T+(35.1−11.4i)T2 |
| 41 | 1+(−5.37−3.90i)T+(12.6+38.9i)T2 |
| 43 | 1+(1.00−1.00i)T−43iT2 |
| 47 | 1+(−0.610+0.311i)T+(27.6−38.0i)T2 |
| 53 | 1+(−8.35+4.25i)T+(31.1−42.8i)T2 |
| 59 | 1+(3.98+2.89i)T+(18.2+56.1i)T2 |
| 61 | 1+(2.67−1.94i)T+(18.8−58.0i)T2 |
| 67 | 1+(−0.883+1.73i)T+(−39.3−54.2i)T2 |
| 71 | 1+(7.28+2.36i)T+(57.4+41.7i)T2 |
| 73 | 1+(−7.69−1.21i)T+(69.4+22.5i)T2 |
| 79 | 1+(−1.42+4.39i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−11.1−5.69i)T+(48.7+67.1i)T2 |
| 89 | 1+(7.91+10.8i)T+(−27.5+84.6i)T2 |
| 97 | 1+(−0.0175−0.0345i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.812882883574206740194034778687, −9.187256695268217082685917110904, −8.884644579769301104838150304395, −7.86793698181111876660685654690, −7.02156535473182140451937979781, −5.96666108045230119173607971021, −5.13712175240189413257142728280, −4.39817193663967386376530464927, −2.02427638744406235667860743688, −1.63404243251017512634921796712,
0.851593557924656242711610309833, 2.10264575042650625675910475127, 3.42583636379127914838459896227, 4.16921068162905114592101231191, 5.86151872960368307648299375472, 6.71702417545868882151977952286, 7.56496138515209457959836728966, 8.323685263174783947795957723157, 9.041650609354446061838310029326, 10.29868310980985941832022691546