L(s) = 1 | + (−0.618 + 1.27i)2-s + (−1.23 − 1.57i)4-s + (2.17 − 0.500i)5-s + (−0.974 − 0.974i)7-s + (2.76 − 0.595i)8-s + (−0.711 + 3.08i)10-s + (1.28 + 1.77i)11-s + (0.471 + 2.97i)13-s + (1.84 − 0.636i)14-s + (−0.953 + 3.88i)16-s + (0.167 + 0.0855i)17-s + (−2.61 − 8.06i)19-s + (−3.47 − 2.81i)20-s + (−3.04 + 0.540i)22-s + (−0.127 + 0.802i)23-s + ⋯ |
L(s) = 1 | + (−0.437 + 0.899i)2-s + (−0.617 − 0.786i)4-s + (0.974 − 0.224i)5-s + (−0.368 − 0.368i)7-s + (0.977 − 0.210i)8-s + (−0.224 + 0.974i)10-s + (0.387 + 0.533i)11-s + (0.130 + 0.826i)13-s + (0.492 − 0.170i)14-s + (−0.238 + 0.971i)16-s + (0.0407 + 0.0207i)17-s + (−0.600 − 1.84i)19-s + (−0.777 − 0.628i)20-s + (−0.649 + 0.115i)22-s + (−0.0264 + 0.167i)23-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.817−0.576i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(0.817−0.576i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.817−0.576i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(523,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :1/2), 0.817−0.576i)
|
Particular Values
L(1) |
≈ |
1.34155+0.425567i |
L(21) |
≈ |
1.34155+0.425567i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.618−1.27i)T |
| 3 | 1 |
| 5 | 1+(−2.17+0.500i)T |
good | 7 | 1+(0.974+0.974i)T+7iT2 |
| 11 | 1+(−1.28−1.77i)T+(−3.39+10.4i)T2 |
| 13 | 1+(−0.471−2.97i)T+(−12.3+4.01i)T2 |
| 17 | 1+(−0.167−0.0855i)T+(9.99+13.7i)T2 |
| 19 | 1+(2.61+8.06i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.127−0.802i)T+(−21.8−7.10i)T2 |
| 29 | 1+(−9.37−3.04i)T+(23.4+17.0i)T2 |
| 31 | 1+(−4.18+1.35i)T+(25.0−18.2i)T2 |
| 37 | 1+(−6.96+1.10i)T+(35.1−11.4i)T2 |
| 41 | 1+(−2.94−2.13i)T+(12.6+38.9i)T2 |
| 43 | 1+(−1.86+1.86i)T−43iT2 |
| 47 | 1+(−5.26+2.68i)T+(27.6−38.0i)T2 |
| 53 | 1+(6.90−3.51i)T+(31.1−42.8i)T2 |
| 59 | 1+(−4.74−3.44i)T+(18.2+56.1i)T2 |
| 61 | 1+(2.78−2.02i)T+(18.8−58.0i)T2 |
| 67 | 1+(3.24−6.37i)T+(−39.3−54.2i)T2 |
| 71 | 1+(9.69+3.15i)T+(57.4+41.7i)T2 |
| 73 | 1+(−0.675−0.106i)T+(69.4+22.5i)T2 |
| 79 | 1+(−3.74+11.5i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−6.86−3.49i)T+(48.7+67.1i)T2 |
| 89 | 1+(4.99+6.87i)T+(−27.5+84.6i)T2 |
| 97 | 1+(−5.10−10.0i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01320456449300337595669146425, −9.113419127299011426350001881606, −8.819168191176694236801380270392, −7.49217050708243679998259413075, −6.62170077008818817032201345384, −6.24657707546452886033537831536, −4.93200963397160234783313608672, −4.33132277298159845095498766074, −2.45714919107679564474897396889, −1.02390938049596579422891136698,
1.14076735312036848559820095663, 2.45759036372337649601556954618, 3.27913860148971590669263668128, 4.49020916029612541823527517238, 5.80520819154123507992458665980, 6.39353468927249513802973373755, 7.85817919070051953085948654494, 8.500630821460245282215968381391, 9.407345980198549673744160232390, 10.12979928297385538365501922851